Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 160609 by cortano last updated on 03/Dec/21

     lim_(x→π)  (((tan x)/(1+cos x)))=?

$$\:\:\:\:\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\right)=? \\ $$

Answered by Ar Brandon last updated on 03/Dec/21

L=lim_(x→π) (((tanx)/(1+cosx))), u=x−π       =lim_(u→0) (((tan(u+π))/(1+cos(u+π))))=lim_(u→0) (((tanu)/(1−cosu)))       =lim_(u→0) (((u/(1−(u^2 /2)))/(1−(1−(u^2 /2)))))=lim_(u→0) (((2u)/(2−u^2 ))∙(2/u^2 ))       =lim_(u→0) ((4/(2u−u^3 )))→±∞

$$\mathscr{L}=\underset{{x}\rightarrow\pi} {\mathrm{lim}}\left(\frac{\mathrm{tan}{x}}{\mathrm{1}+\mathrm{cos}{x}}\right),\:{u}={x}−\pi \\ $$$$\:\:\:\:\:=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{tan}\left({u}+\pi\right)}{\mathrm{1}+\mathrm{cos}\left({u}+\pi\right)}\right)=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{tan}{u}}{\mathrm{1}−\mathrm{cos}{u}}\right) \\ $$$$\:\:\:\:\:=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\frac{{u}}{\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}}}{\mathrm{1}−\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right)}\right)=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{2}{u}}{\mathrm{2}−{u}^{\mathrm{2}} }\centerdot\frac{\mathrm{2}}{{u}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{4}}{\mathrm{2}{u}−{u}^{\mathrm{3}} }\right)\rightarrow\pm\infty \\ $$

Answered by alephzero last updated on 03/Dec/21

     lim_(x→π)  (((tan x)/(1+cos x)))=?  To be honest, I′m in 6^(th)  grade.  But I can try  lim_(x→π ) ((tan x)/(1 + cos x)) = ?  tan π = 0  cos π = −1  1 + cos π = 0  This equation may look weird,  but let′s remember the rules of  arithmetic.  ∀n {n ∈ R ∣ (n/n) = 1}  Then,  lim_(x→π) ((tan x)/(1 + cos x)) = ((tan π)/(1 + cos π)) = (0/0) = 1  Or, if  lim_(x→0) (n/x) → ∞, where n ∈ R  then  lim_(x→π) ((tan x)/(1 + cos x)) = lim_(x→0) (0/x) = ∞  If this is false, don′t mind me,  I don′t know L′Ho^� pital′s rule,  and I′m only 12 years old.

$$\:\:\:\:\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\right)=? \\ $$$${To}\:{be}\:{honest},\:{I}'{m}\:{in}\:\mathrm{6}^{{th}} \:{grade}. \\ $$$${But}\:{I}\:{can}\:{try} \\ $$$$\underset{{x}\rightarrow\pi\:} {\mathrm{lim}}\frac{\mathrm{tan}\:{x}}{\mathrm{1}\:+\:\mathrm{cos}\:{x}}\:=\:? \\ $$$$\mathrm{tan}\:\pi\:=\:\mathrm{0} \\ $$$$\mathrm{cos}\:\pi\:=\:−\mathrm{1} \\ $$$$\mathrm{1}\:+\:\mathrm{cos}\:\pi\:=\:\mathrm{0} \\ $$$${This}\:{equation}\:{may}\:{look}\:{weird}, \\ $$$${but}\:{let}'{s}\:{remember}\:{the}\:{rules}\:{of} \\ $$$${arithmetic}. \\ $$$$\forall{n}\:\left\{{n}\:\in\:\mathbb{R}\:\mid\:\frac{{n}}{{n}}\:=\:\mathrm{1}\right\} \\ $$$${Then}, \\ $$$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{\mathrm{tan}\:{x}}{\mathrm{1}\:+\:\mathrm{cos}\:{x}}\:=\:\frac{\mathrm{tan}\:\pi}{\mathrm{1}\:+\:\mathrm{cos}\:\pi}\:=\:\frac{\mathrm{0}}{\mathrm{0}}\:=\:\mathrm{1} \\ $$$${Or},\:{if} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{n}}{{x}}\:\rightarrow\:\infty,\:{where}\:{n}\:\in\:\mathbb{R} \\ $$$${then} \\ $$$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{\mathrm{tan}\:{x}}{\mathrm{1}\:+\:\mathrm{cos}\:{x}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{0}}{{x}}\:=\:\infty \\ $$$${If}\:{this}\:{is}\:{false},\:{don}'{t}\:{mind}\:{me}, \\ $$$${I}\:{don}'{t}\:{know}\:{L}'{H}\hat {{o}pital}'{s}\:{rule}, \\ $$$${and}\:{I}'{m}\:{only}\:\mathrm{12}\:{years}\:{old}. \\ $$$$ \\ $$

Answered by tounghoungko last updated on 03/Dec/21

 lim_(x→π)  (((2sin (1/2)x cos (1/2)x)/(2cos^2 (1/2)x cos x))) =   lim_(x→π)  (((tan (1/2)x)/(cos x)))=−∞

$$\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{2sin}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}}{\mathrm{2cos}\:^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}\right)\:= \\ $$$$\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}}{\mathrm{cos}\:\mathrm{x}}\right)=−\infty \\ $$

Answered by Mathspace last updated on 03/Dec/21

f(x)=((tanx)/(1+cosx))  changement x−π=t give  f(x)=f(t+π)=((tan(t+π))/(1+cos(t+π))) (t→0)  =((tant)/(1−cost))∼(t/(t^2 /2))=(2/t) →∞

$${f}\left({x}\right)=\frac{{tanx}}{\mathrm{1}+{cosx}} \\ $$$${changement}\:{x}−\pi={t}\:{give} \\ $$$${f}\left({x}\right)={f}\left({t}+\pi\right)=\frac{{tan}\left({t}+\pi\right)}{\mathrm{1}+{cos}\left({t}+\pi\right)}\:\left({t}\rightarrow\mathrm{0}\right) \\ $$$$=\frac{{tant}}{\mathrm{1}−{cost}}\sim\frac{{t}}{\frac{{t}^{\mathrm{2}} }{\mathrm{2}}}=\frac{\mathrm{2}}{{t}}\:\rightarrow\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com