Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16064 by Tinkutara last updated on 21/Jun/17

Let ABCD be a convex quadrilateral  and M a point in its interior such that  [MAB] = [MBC] = [MCD] = [MDA].  Prove that one of the diagonals of  ABCD passes through the midpoint of  the other diagonal.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{M}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{its}\:\mathrm{interior}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left[{MAB}\right]\:=\:\left[{MBC}\right]\:=\:\left[{MCD}\right]\:=\:\left[{MDA}\right]. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{of} \\ $$$${ABCD}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{diagonal}. \\ $$

Commented by Tinkutara last updated on 20/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Jun/17

Bo×oM.sin(BoM)=Do×oM.sin(180−BoM)⇒  ⇒        Bo=Do⇒ AC  passes from midpoint  of BD.

$${Bo}×{oM}.{sin}\left({BoM}\right)={Do}×{oM}.{sin}\left(\mathrm{180}−{BoM}\right)\Rightarrow \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:{Bo}={Do}\Rightarrow\:{AC}\:\:{passes}\:{from}\:{midpoint} \\ $$$${of}\:{BD}. \\ $$

Commented by Tinkutara last updated on 27/Jun/17

This is incorrect solution. Should I  post the correct answer?

$$\mathrm{This}\:\mathrm{is}\:\mathrm{incorrect}\:\mathrm{solution}.\:\mathrm{Should}\:\mathrm{I} \\ $$$$\mathrm{post}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{answer}? \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/Jun/17

[BCM]=[CMD]⇒BM=MD  [BMA]=[DMA]⇒∠BMA=∠DMA  ⇒ { ((BM=MD)),((∠BMo=∠DMo)) :}⇒^(oM=oM)   ΔBMo=ΔDMo  ⇒Bo=Do⇒AC passes trough midpoint  of BD.

$$\left[{BCM}\right]=\left[{CMD}\right]\Rightarrow{BM}={MD} \\ $$$$\left[{BMA}\right]=\left[{DMA}\right]\Rightarrow\angle{BMA}=\angle{DMA} \\ $$$$\Rightarrow\begin{cases}{{BM}={MD}}\\{\angle{BMo}=\angle{DMo}}\end{cases}\overset{{oM}={oM}} {\Rightarrow}\:\:\Delta{BMo}=\Delta{DMo} \\ $$$$\Rightarrow{Bo}={Do}\Rightarrow{AC}\:{passes}\:{trough}\:{midpoint} \\ $$$${of}\:{BD}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/Jun/17

yes ofcorse.please post it.

$${yes}\:{ofcorse}.{please}\:{post}\:{it}. \\ $$

Commented by Tinkutara last updated on 27/Jun/17

Commented by Tinkutara last updated on 27/Jun/17

This is my book′s solution. Please  explain the last line.

$$\mathrm{This}\:\mathrm{is}\:\mathrm{my}\:\mathrm{book}'\mathrm{s}\:\mathrm{solution}.\:\mathrm{Please} \\ $$$$\mathrm{explain}\:\mathrm{the}\:\mathrm{last}\:\mathrm{line}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/Jun/17

we prove that:Do=Bo ,and it is  proves that AC passes trough midpoint  of BD.

$${we}\:{prove}\:{that}:{Do}={Bo}\:,{and}\:{it}\:{is} \\ $$$${proves}\:{that}\:{AC}\:{passes}\:{trough}\:{midpoint} \\ $$$${of}\:{BD}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com