Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 160658 by HongKing last updated on 04/Dec/21

Find:   lim_(x→0)  4x [ (1/(4x)) ] = ?

Find:limx04x[14x]=?

Commented by mr W last updated on 04/Dec/21

lim_(x→0) 4x[(1/(4x))]  =lim_(t→∞) (([t])/t)=L  t−1<[t]≤t  lim_(t→∞) ((t−1)/t)<L≤lim_(t→∞) (t/t)  1<L≤1  ⇒L=1

lim4x0x[14x]=limt[t]t=Lt1<[t]tlimtt1t<Llimttt1<L1L=1

Commented by mnjuly1970 last updated on 04/Dec/21

very nice solution sir W

verynicesolutionsirW

Commented by HongKing last updated on 04/Dec/21

Nice solution my dear Sir thank you

NicesolutionmydearSirthankyou

Answered by mathmax by abdo last updated on 04/Dec/21

we have [(1/(4x))]≤(1/(4x))<[(1/(4x))]+1 ⇒(1/(4x))−1<[(1/(4x))]≤(1/(4x)) ⇒  for x>0  we have 1−4x<4x.[(1/(4x))]≤1 ⇒  lim_(x→0^+ )   4x[(1/(4x))]=1

wehave[14x]14x<[14x]+114x1<[14x]14xforx>0wehave14x<4x.[14x]1limx0+4x[14x]=1

Commented by HongKing last updated on 04/Dec/21

Thank you so much my dear Sir vool

ThankyousomuchmydearSirvool

Terms of Service

Privacy Policy

Contact: info@tinkutara.com