Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 160672 by LEKOUMA last updated on 04/Dec/21

Calculate   lim_(x→0) ((tgx^m )/((sin x)^n )),   lim_(x→0) ((xcos x−x)/((e^x −1)ln (1+3x^2 )))

Calculatelimx0tgxm(sinx)n,limx0xcosxx(ex1)ln(1+3x2)

Commented by tounghoungko last updated on 04/Dec/21

(2) lim_(x→0)  ((x cos x−x)/((e^x −1) ln (1+3x^2 )))      = lim_(x→0)  ((x(cos x−1))/((e^x −1) ln (1+3x^2 )))      = lim_(x→0)  (1/((((e^x −1)/x)))) × lim_(x→0)  ((−2sin^2 ((1/2)x))/(ln (1+3x^2 )))     = 1× lim_(x→0)  ((−(1/2)x^2 )/(ln (1+3x^2 )))     =−(1/2)× lim_(x→0)  ((2x)/((((6x)/( (1+3x^2 ))))))      =−(1/6) ×lim_(x→0)   (1+3x^2 )= −(1/6)

(2)limx0xcosxx(ex1)ln(1+3x2)=limx0x(cosx1)(ex1)ln(1+3x2)=limx01(ex1x)×limx02sin2(12x)ln(1+3x2)=1×limx012x2ln(1+3x2)=12×limx02x(6x(1+3x2))=16×limx0(1+3x2)=16

Answered by alephzero last updated on 04/Dec/21

1. lim_(x→0) ((tg (x^m ))/((sin x)^n )) = ?  n^0  = 1 ⇔ n ∈ R  tg 0 = 0  tg 1 ≈ 1.55741  ⇒ tg 0^m  = 0 ⇔ m > 0  tg 0^m  ≈ 1.55741 ⇔ m = 0  sin 0 = 0  ⇒ (sin 0)^n  = 0 ⇔ n > 0  (sin 0)^n  = 1 ⇔ n = 0  ⇒ lim_(x→0) ((tg x^m )/((sin x)^n )) = ±∞ ⇔ ((m > 0) ∧ (n > 0))   lim_(x→0) ((tg x^m )/((sin x)^n )) = 0 ⇔ ((m > 0) ∧ (n = 0))   lim_(x→0) ((tg x^m )/((sin x)^n )) ≈ 1.55741 ⇔ ((m = 0) ∧ (n = 0))  Answered by alephzero, student  of 6^(th)  grade.

1.limx0tg(xm)(sinx)n=?n0=1nRtg0=0tg11.55741tg0m=0m>0tg0m1.55741m=0sin0=0(sin0)n=0n>0(sin0)n=1n=0limx0tgxm(sinx)n=±((m>0)(n>0))limx0tgxm(sinx)n=0((m>0)(n=0))limx0tgxm(sinx)n1.55741((m=0)(n=0))Answeredbyalephzero,studentof6thgrade.

Commented by mr W last updated on 04/Dec/21

in this forum all members are equal.  one doesn′t need to tell if he/she is   teacher or student, old or young, man  or woman, Indian or Japanese,   buddist or muslim, earthling or   marsian... only one thing is   important: they  love mathematics.

inthisforumallmembersareequal.onedoesntneedtotellifhe/sheisteacherorstudent,oldoryoung,manorwoman,IndianorJapanese,buddistormuslim,earthlingormarsian...onlyonethingisimportant:theylovemathematics.

Commented by greg_ed last updated on 05/Dec/21

right !

right!

Answered by mr W last updated on 04/Dec/21

(1)  =lim_(x→0) ((tan (x^m ))/x^m )×((x/(sin x)))^n ×x^(m−n)   =lim_(x→0) x^(m−n) = { ((1, if m=n)),((0, if m>n)),((∞, if m<n)) :}  (2)  =lim_(x→0) ((x(−2 sin^2  (x/2)))/((e^x −1)ln (1+3x^2 )))  =lim_(x→0) ((−2x sin^2  (x/2))/((x+(x^2 /(2!))+...)(3x^2 −((9x^4 )/2)+...)))  =lim_(x→0) ((−2 sin^2  (x/2))/((1+(x/(2!))+...)(3−((9x^2 )/2)+...)x^2 ))  =lim_(x→0) ((−1)/((1+(x/(2!))+...)(3−((9x^2 )/2)+...)×2))×(((sin (x/2))/(x/2)))^2   =−(1/(1×3×2))×1^2   =−(1/6)

(1)=limx0tan(xm)xm×(xsinx)n×xmn=limx0xmn={1,ifm=n0,ifm>n,ifm<n(2)=limx0x(2sin2x2)(ex1)ln(1+3x2)=limx02xsin2x2(x+x22!+...)(3x29x42+...)=limx02sin2x2(1+x2!+...)(39x22+...)x2=limx01(1+x2!+...)(39x22+...)×2×(sinx2x2)2=11×3×2×12=16

Answered by Jamshidbek last updated on 05/Dec/21

lim_(x→0) ((tgx^m )/((sinx)^n ))=lim_(x→0) ((tgx^m )/x^m )∙(x^m /((sinx)^n ))=  =lim_(x→0) ((x^m ∙x^m )/((((sinx)/x))^n ∙x^n ))=lim_(x→0) (x^(2m) /x^n )=lim_(x→0) x^(2m−n) =0

limx0tgxm(sinx)n=limx0tgxmxmxm(sinx)n==limx0xmxm(sinxx)nxn=limx0x2mxn=limxx02mn=0

Commented by mr W last updated on 05/Dec/21

wrong!  lim((tgx^m )/x^m )∙(x^m /((sinx)^n ))≠lim((x^m ∙x^m )/((((sinx)/x))^n ∙x^n ))  x^m  is too much.

wrong!limtgxmxmxm(sinx)nlimxmxm(sinxx)nxnxmistoomuch.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com