Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16068 by Tinkutara last updated on 21/Jun/17

Let ABCD be a convex quadrilateral  and let E and F be the points of  intersections of the lines AB, CD and  AD, BC, respectively. Prove that the  midpoints of the segments AC, BD,  and EF are collinear.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{let}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{points}\:\mathrm{of} \\ $$$$\mathrm{intersections}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lines}\:{AB},\:{CD}\:\mathrm{and} \\ $$$${AD},\:{BC},\:\mathrm{respectively}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{segments}\:{AC},\:{BD}, \\ $$$$\mathrm{and}\:{EF}\:\mathrm{are}\:\mathrm{collinear}. \\ $$

Answered by ajfour last updated on 30/Jun/17

z_I =(z_1 /2) ;   z_G =((mz_2 +z_1 +k(z_2 −z_1 ))/2) ;  z_G −z_I =(−(k/2))z_1 +(((m+k)/2))z_2                z_D =z_1 +λ(z_1 −mz_2 )   also    z_D =μ[z_1 +k(z_2 −z_1 )]   z_D −z_D =0 ⇒   (1+λ−μ+μk)z_1 −(λm+μk)z_2 =0  ⇒ 1+λ−μ(1−k)=0 and μ=−((λm)/k)  so 1+λ+((λm(1−k))/k)=0  k+λ(k+m−mk)=0   or  λ=(k/(mk−(m+k)))  z_D = z_1 +(k/([mk−(m+k)]))(z_1 −mz_2 )      =((mkz_1 −mz_1 −kz_1 +kz_1 −mkz_2 )/(mk−(m+k)))     =((m(k−1)z_1 −mkz_2 )/(mk−(m+k)))  z_H =((z_2 +z_D )/2) ⇒  z_H −z_I =((z_2 +z_D −z_1 )/2)  z_H −z_I =((z_2 −z_1 )/2)−((m(k−1)z_1 −mkz_2 )/(2(mk−m−k)))   =(((mk−m−k)(z_1 −z_2 )−mk(z_1 −z_2 )+mz_1 )/(2(mk−m−k)))  =((−kz_1 +(m+k)z_2 )/(2c))   ∀ c=mk−m−k  z_H −z_I =(1/c)[−(k/2)z_1 +(((m+k)/2))z_2 ]              =((z_G −z_I )/c)  ⇒  z_H ,z_G , and z_I  are collinear.

$$\mathrm{z}_{\boldsymbol{\mathrm{I}}} =\frac{\mathrm{z}_{\mathrm{1}} }{\mathrm{2}}\:;\:\:\:\mathrm{z}_{\mathrm{G}} =\frac{\mathrm{mz}_{\mathrm{2}} +\mathrm{z}_{\mathrm{1}} +\mathrm{k}\left(\mathrm{z}_{\mathrm{2}} −\mathrm{z}_{\mathrm{1}} \right)}{\mathrm{2}}\:; \\ $$$$\mathrm{z}_{\mathrm{G}} −\mathrm{z}_{\mathrm{I}} =\left(−\frac{\mathrm{k}}{\mathrm{2}}\right)\mathrm{z}_{\mathrm{1}} +\left(\frac{\mathrm{m}+\mathrm{k}}{\mathrm{2}}\right)\mathrm{z}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{z}_{\mathrm{D}} =\mathrm{z}_{\mathrm{1}} +\lambda\left(\mathrm{z}_{\mathrm{1}} −\mathrm{mz}_{\mathrm{2}} \right) \\ $$$$\:\mathrm{also}\:\:\:\:\mathrm{z}_{\mathrm{D}} =\mu\left[\mathrm{z}_{\mathrm{1}} +\mathrm{k}\left(\mathrm{z}_{\mathrm{2}} −\mathrm{z}_{\mathrm{1}} \right)\right] \\ $$$$\:\mathrm{z}_{\mathrm{D}} −\mathrm{z}_{\mathrm{D}} =\mathrm{0}\:\Rightarrow\: \\ $$$$\left(\mathrm{1}+\lambda−\mu+\mu\mathrm{k}\right)\mathrm{z}_{\mathrm{1}} −\left(\lambda\mathrm{m}+\mu\mathrm{k}\right)\mathrm{z}_{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}+\lambda−\mu\left(\mathrm{1}−\mathrm{k}\right)=\mathrm{0}\:\mathrm{and}\:\mu=−\frac{\lambda\mathrm{m}}{\mathrm{k}} \\ $$$$\mathrm{so}\:\mathrm{1}+\lambda+\frac{\lambda\mathrm{m}\left(\mathrm{1}−\mathrm{k}\right)}{\mathrm{k}}=\mathrm{0} \\ $$$$\mathrm{k}+\lambda\left(\mathrm{k}+\mathrm{m}−\mathrm{mk}\right)=\mathrm{0} \\ $$$$\:\mathrm{or}\:\:\lambda=\frac{\mathrm{k}}{\mathrm{mk}−\left(\mathrm{m}+\mathrm{k}\right)} \\ $$$$\mathrm{z}_{\mathrm{D}} =\:\mathrm{z}_{\mathrm{1}} +\frac{\mathrm{k}}{\left[\mathrm{mk}−\left(\mathrm{m}+\mathrm{k}\right)\right]}\left(\mathrm{z}_{\mathrm{1}} −\mathrm{mz}_{\mathrm{2}} \right) \\ $$$$\:\:\:\:=\frac{\mathrm{mkz}_{\mathrm{1}} −\mathrm{mz}_{\mathrm{1}} −\mathrm{kz}_{\mathrm{1}} +\mathrm{kz}_{\mathrm{1}} −\mathrm{mkz}_{\mathrm{2}} }{\mathrm{mk}−\left(\mathrm{m}+\mathrm{k}\right)} \\ $$$$\:\:\:=\frac{\mathrm{m}\left(\mathrm{k}−\mathrm{1}\right)\mathrm{z}_{\mathrm{1}} −\mathrm{mkz}_{\mathrm{2}} }{\mathrm{mk}−\left(\mathrm{m}+\mathrm{k}\right)} \\ $$$$\mathrm{z}_{\mathrm{H}} =\frac{\mathrm{z}_{\mathrm{2}} +\mathrm{z}_{\mathrm{D}} }{\mathrm{2}}\:\Rightarrow\:\:\mathrm{z}_{\mathrm{H}} −\mathrm{z}_{\boldsymbol{\mathrm{I}}} =\frac{\mathrm{z}_{\mathrm{2}} +\mathrm{z}_{\mathrm{D}} −\mathrm{z}_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\mathrm{z}_{\mathrm{H}} −\mathrm{z}_{\boldsymbol{\mathrm{I}}} =\frac{\mathrm{z}_{\mathrm{2}} −\mathrm{z}_{\mathrm{1}} }{\mathrm{2}}−\frac{\mathrm{m}\left(\mathrm{k}−\mathrm{1}\right)\mathrm{z}_{\mathrm{1}} −\mathrm{mkz}_{\mathrm{2}} }{\mathrm{2}\left(\mathrm{mk}−\mathrm{m}−\mathrm{k}\right)} \\ $$$$\:=\frac{\left(\mathrm{mk}−\mathrm{m}−\mathrm{k}\right)\left(\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \right)−\mathrm{mk}\left(\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \right)+\mathrm{mz}_{\mathrm{1}} }{\mathrm{2}\left(\mathrm{mk}−\mathrm{m}−\mathrm{k}\right)} \\ $$$$=\frac{−\mathrm{kz}_{\mathrm{1}} +\left(\mathrm{m}+\mathrm{k}\right)\mathrm{z}_{\mathrm{2}} }{\mathrm{2c}}\:\:\:\forall\:\mathrm{c}=\mathrm{mk}−\mathrm{m}−\mathrm{k} \\ $$$$\mathrm{z}_{\mathrm{H}} −\mathrm{z}_{\boldsymbol{\mathrm{I}}} =\frac{\mathrm{1}}{\mathrm{c}}\left[−\frac{\mathrm{k}}{\mathrm{2}}\mathrm{z}_{\mathrm{1}} +\left(\frac{\mathrm{m}+\mathrm{k}}{\mathrm{2}}\right)\mathrm{z}_{\mathrm{2}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{z}_{\mathrm{G}} −\mathrm{z}_{\boldsymbol{\mathrm{I}}} }{\mathrm{c}} \\ $$$$\Rightarrow\:\:\mathrm{z}_{\mathrm{H}} ,\mathrm{z}_{\mathrm{G}} ,\:\mathrm{and}\:\mathrm{z}_{\boldsymbol{\mathrm{I}}} \:\mathrm{are}\:\mathrm{collinear}. \\ $$

Commented by ajfour last updated on 30/Jun/17

let me see your book′s solution..

$$\mathrm{let}\:\mathrm{me}\:\mathrm{see}\:\mathrm{your}\:\mathrm{book}'\mathrm{s}\:\mathrm{solution}.. \\ $$

Commented by ajfour last updated on 30/Jun/17

Answered by Tinkutara last updated on 30/Jun/17

Let P, Q, and R be the midpoints of  AC, BD, and EF. (Figure). Denote by  S the area of ABCD. As we have seen  the locus of the points M in the interior  of ABCD for which  [MAB] + [MCD] = (1/2) S  is a segment. We see that P and Q  belong to this segment. Indeed,  [PAB] + [PCD] = (1/2)[ABC] + (1/2)[ACD]  = (1/2) S.  and  [QAD] + [QCD] = (1/2)[ABD] + (1/2)[BCD]  = (1/2) S.  Now we have [RAB] = (1/2)[FAB],  since the distance from F to AB is  twice the distance from R to AB.  Similarly, [RCD] = (1/2)[FCD].  We obtain  [RAB] − [RCD] = (1/2)[FAB] − [FCD]  = (1/2) S.  Taking into account the observation in  the solution to Problem 16064, it  follows that P, Q and R are collinear.

$$\mathrm{Let}\:{P},\:{Q},\:\mathrm{and}\:{R}\:\mathrm{be}\:\mathrm{the}\:\mathrm{midpoints}\:\mathrm{of} \\ $$$${AC},\:{BD},\:\mathrm{and}\:{EF}.\:\left(\mathrm{Figure}\right).\:\mathrm{Denote}\:\mathrm{by} \\ $$$${S}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:{ABCD}.\:\mathrm{As}\:\mathrm{we}\:\mathrm{have}\:\mathrm{seen} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{points}\:{M}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interior} \\ $$$$\mathrm{of}\:{ABCD}\:\mathrm{for}\:\mathrm{which} \\ $$$$\left[{MAB}\right]\:+\:\left[{MCD}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{S} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{segment}.\:\mathrm{We}\:\mathrm{see}\:\mathrm{that}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q} \\ $$$$\mathrm{belong}\:\mathrm{to}\:\mathrm{this}\:\mathrm{segment}.\:\mathrm{Indeed}, \\ $$$$\left[{PAB}\right]\:+\:\left[{PCD}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[{ABC}\right]\:+\:\frac{\mathrm{1}}{\mathrm{2}}\left[{ACD}\right] \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:{S}. \\ $$$$\mathrm{and} \\ $$$$\left[{QAD}\right]\:+\:\left[{QCD}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[{ABD}\right]\:+\:\frac{\mathrm{1}}{\mathrm{2}}\left[{BCD}\right] \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:{S}. \\ $$$$\mathrm{Now}\:\mathrm{we}\:\mathrm{have}\:\left[{RAB}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[{FAB}\right], \\ $$$$\mathrm{since}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:{F}\:\mathrm{to}\:{AB}\:\mathrm{is} \\ $$$$\mathrm{twice}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:{R}\:\mathrm{to}\:{AB}. \\ $$$$\mathrm{Similarly},\:\left[{RCD}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[{FCD}\right]. \\ $$$$\mathrm{We}\:\mathrm{obtain} \\ $$$$\left[{RAB}\right]\:−\:\left[{RCD}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[{FAB}\right]\:−\:\left[{FCD}\right] \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:{S}. \\ $$$$\mathrm{Taking}\:\mathrm{into}\:\mathrm{account}\:\mathrm{the}\:\mathrm{observation}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{Problem}\:\mathrm{16064},\:\mathrm{it} \\ $$$$\mathrm{follows}\:\mathrm{that}\:{P},\:{Q}\:\mathrm{and}\:{R}\:\mathrm{are}\:\mathrm{collinear}. \\ $$

Commented by Tinkutara last updated on 30/Jun/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com