Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 160706 by HongKing last updated on 05/Dec/21

Answered by mr W last updated on 05/Dec/21

S_n =Σ_(k=1) ^n sin ((k/n^3 ))  T_n =Σ_(k=1) ^n cos ((k/n^3 ))  T_n +iS_n =Σ_(k=1) ^n {cos ((k/n^3 ))+i sin ((k/n^3 ))}  T_n +iS_n =Σ_(k=1) ^n e^((ik)/n^3 ) =((e^(i/n^3 ) (e^((in)/n^3 ) −1))/(e^(i/n^3 ) −1))  T_n +iS_n =(((cos (1/n^3 )+i sin (1/n^3 ))[(cos (1/n^2 )−1)+i sin (1/n^2 )])/((cos (1/n^3 )−1)+isin (1/n^3 )))  T_n +iS_n =(([cos (1/n^3 ) (cos (1/n^2 )−1)−sin (1/n^3 ) sin (1/n^2 )]+i[cos (1/n^3 ) sin (1/n^2 )+sin (1/n^3 ) (cos (1/n^2 )−1)])/((cos (1/n^3 )−1)+isin (1/n^3 )))  T_n +iS_n =(([cos ((1/n^3 )+(1/n^2 ))−cos (1/n^3 )]+i[ sin ((1/n^3 )+(1/n^2 ))−sin (1/n^3 ) ])/((cos (1/n^3 )−1)+isin (1/n^3 )))  T_n +iS_n =(({[cos ((1/n^3 )+(1/n^2 ))−cos (1/n^3 )]+i[ sin ((1/n^3 )+(1/n^2 ))−sin (1/n^3 ) ]}[(cos (1/n^3 )−1)−isin (1/n^3 )])/((cos (1/n^3 )−1)^2 +(sin (1/n^3 ))^2 ))  T_n +iS_n =(({(cos ((n+1)/n^3 )−cos (1/n^3 ))(cos (1/n^3 )−1)+sin (1/n^3 ) ( sin ((n+1)/n^3 )−sin (1/n^3 ))}+i{(cos (1/n^3 )−1)( sin ((n+1)/n^3 )−sin (1/n^3 ))−sin (1/n^3 ) (cos ((n+1)/n^3 )−cos (1/n^3 ))})/((cos (1/n^3 )−1)^2 +(sin (1/n^3 ))^2 ))  ⇒T_n =(((cos ((n+1)/n^3 )−cos (1/n^3 ))(cos (1/n^3 )−1)+sin (1/n^3 ) ( sin ((n+1)/n^3 )−sin (1/n^3 )))/((cos (1/n^3 )−1)^2 +(sin (1/n^3 ))^2 ))  ⇒T_n =(1/2){((cos (1/n^2 )−cos ((1/n^3 )+(1/n^2 ))cos (1/n^3 ))/(1−cos (1/n^3 )))−1}  ⇒T_n =(1/2){((sin (1/n^3 ) sin ((1/n^3 )+ (1/n^2 )))/(1−cos (1/n^3 )))−1}  ⇒S_n =(((cos (1/n^3 )−1)( sin ((n+1)/n^3 )−sin (1/n^3 ))−sin (1/n^3 ) (cos ((n+1)/n^3 )−cos (1/n^3 )))/((cos (1/n^3 )−1)^2 +(sin (1/n^3 ))^2 ))  ⇒S_n =((sin (1/n^3 )+sin (1/n^2 )−sin ((1/n^3 )+(1/n^2 )))/(2(1−cos (1/n^3 ))))  ⇒S_n =(1/2){((1−cos (1/n^2 ))/(1−cos (1/n^3 )))×sin (1/n^3 )+sin (1/n^2 )}  lim_(n→∞) S_n =(1/2)lim_(n→∞) {((1−cos (1/n^2 ))/(1−cos (1/n^3 )))×sin (1/n^3 )+sin (1/n^2 )}  =(1/2)lim_(x→0) {((1−cos x^2 )/(1−cos x^3 ))×sin x^3 +sin x^2 }  =(1/2)lim_(x→0) {0+0}  =0    lim_(x→0) {((1−cos x^2 )/(1−cos x^3 ))×sin x^3 }  =lim_(x→0) {(((x^4 /2)−(x^8 /(24))+...)/((x^6 /2)−(x^(12) /(24))+...))×(x^3 −(x^6 /6)+...)}  =lim_(x→0) {((x((1/2)−(x^4 /(24))+...))/((1/2)−(x^6 /(24))+...))×(1−(x^3 /6)+...)}  =0

Sn=nk=1sin(kn3)Tn=nk=1cos(kn3)Tn+iSn=nk=1{cos(kn3)+isin(kn3)}Tn+iSn=nk=1eikn3=ein3(einn31)ein31Tn+iSn=(cos1n3+isin1n3)[(cos1n21)+isin1n2](cos1n31)+isin1n3Tn+iSn=[cos1n3(cos1n21)sin1n3sin1n2]+i[cos1n3sin1n2+sin1n3(cos1n21)](cos1n31)+isin1n3Tn+iSn=[cos(1n3+1n2)cos1n3]+i[sin(1n3+1n2)sin1n3](cos1n31)+isin1n3Tn+iSn={[cos(1n3+1n2)cos1n3]+i[sin(1n3+1n2)sin1n3]}[(cos1n31)isin1n3](cos1n31)2+(sin1n3)2Tn+iSn={(cosn+1n3cos1n3)(cos1n31)+sin1n3(sinn+1n3sin1n3)}+i{(cos1n31)(sinn+1n3sin1n3)sin1n3(cosn+1n3cos1n3)}(cos1n31)2+(sin1n3)2Tn=(cosn+1n3cos1n3)(cos1n31)+sin1n3(sinn+1n3sin1n3)(cos1n31)2+(sin1n3)2Tn=12{cos1n2cos(1n3+1n2)cos1n31cos1n31}Tn=12{sin1n3sin(1n3+1n2)1cos1n31}Sn=(cos1n31)(sinn+1n3sin1n3)sin1n3(cosn+1n3cos1n3)(cos1n31)2+(sin1n3)2Sn=sin1n3+sin1n2sin(1n3+1n2)2(1cos1n3)Sn=12{1cos1n21cos1n3×sin1n3+sin1n2}limnSn=12limn{1cos1n21cos1n3×sin1n3+sin1n2}=12limx0{1cosx21cosx3×sinx3+sinx2}=12limx0{0+0}=0limx0{1cosx21cosx3×sinx3}=limx0{x42x824+...x62x1224+...×(x3x66+...)}=limx0{x(12x424+...)12x624+...×(1x36+...)}=0

Answered by mindispower last updated on 05/Dec/21

0≤sin(x)≤x,∀x∈[0,(π/2)]  proof ,cos(x)≤1⇒∫_0 ^t cos(x)dx≤∫_0 ^t dx  ⇔sin(t)≤t  ∀k∈[1,n],(k/n^3 )∈[0,1[⊂[0,(π/2)]  0≤S_n ≤Σ_(k=1) ^n (k/n^3 )=(1/n^3 ).((n(1+n))/2)  ⇒LimS_n =0

0sin(x)x,x[0,π2]proof,cos(x)10tcos(x)dx0tdxsin(t)tk[1,n],kn3[0,1[[0,π2]0Snnk=1kn3=1n3.n(1+n)2LimSn=0

Commented by mr W last updated on 05/Dec/21

nice method for the limit!  can you please comfirm if my  formulas for S_n  and T_n  are correct?

nicemethodforthelimit!canyoupleasecomfirmifmyformulasforSnandTnarecorrect?

Commented by mindispower last updated on 05/Dec/21

thank You  nice way you go thro too  correct way sir  nice day

thankYounicewayyougothrotoocorrectwaysirniceday

Commented by mr W last updated on 06/Dec/21

thanks sir!

thankssir!

Answered by qaz last updated on 05/Dec/21

lim_(n→∞) Σ_(k=1) ^n sin ((k/n^3 ))=lim_(n→∞) Σ_(k=1) ^n ((k/n^3 )+o((1/n^3 )))=lim_(n→∞) (((n+1)/(2n^2 ))+o((1/n^2 )))=0

limnnk=1sin(kn3)=limnnk=1(kn3+o(1n3))=limn(n+12n2+o(1n2))=0

Answered by mathmax by abdo last updated on 06/Dec/21

S_n =Σ_(k=1) ^n sin((k/n^3 ))  we know  x−(x^3 /6)≤sinx≤x ⇒  (k/n^3 )−(1/6)(k^3 /n^9 )≤sin((k/n^3 ))≤(k/n^3 ) ⇒  (1/n^3 )Σ_(k=1) ^n  k−(1/(6n^9 ))Σ_(k=1) ^n  k^3  ≤Σ_(k=1) ^n sin((k/n^3 ))≤(1/n^3 )Σ_(i=1) ^n  k ⇒  ((n(n+1))/(2n^3 ))−(1/(6n^9 ))((n^2 (n+1)^2 )/4)≤S_n ≤((n(n+1))/(2n^3 )) ⇒  ((n+1)/(2n^2 ))−(((n+1)^2 )/(24n^7 ))(→0)≤S_n ≤((n+1)/(2n^2 ))(→0) ⇒lim_(n→+∞) S_n =0

Sn=k=1nsin(kn3)weknowxx36sinxxkn316k3n9sin(kn3)kn31n3k=1nk16n9k=1nk3k=1nsin(kn3)1n3i=1nkn(n+1)2n316n9n2(n+1)24Snn(n+1)2n3n+12n2(n+1)224n7(0)Snn+12n2(0)limn+Sn=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com