Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 160711 by HongKing last updated on 05/Dec/21

Be  p  a prime number , arbitrary.  Solve on positive integers  (x;y;z)   { ((xy + z^2  = 3p + 4)),((x + yz^2  = p + 4)) :}

$$\mathrm{Be}\:\:\boldsymbol{\mathrm{p}}\:\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:,\:\mathrm{arbitrary}. \\ $$$$\mathrm{Solve}\:\mathrm{on}\:\mathrm{positive}\:\mathrm{integers}\:\:\left(\boldsymbol{\mathrm{x}};\boldsymbol{\mathrm{y}};\boldsymbol{\mathrm{z}}\right) \\ $$$$\begin{cases}{\mathrm{xy}\:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{3p}\:+\:\mathrm{4}}\\{\mathrm{x}\:+\:\mathrm{yz}^{\mathrm{2}} \:=\:\mathrm{p}\:+\:\mathrm{4}}\end{cases} \\ $$

Answered by mr W last updated on 06/Dec/21

(i)−(ii):  x(y−1)+z^2 (1−y)=2p  (x−z^2 )(y−1)=2p= { ((1×2p)),((2×p)) :}    y−1=1, x−z^2 =2p  y=2, x=z^2 +2p  z^2 +2p+2z^2 =p+4  3z^2 =4−p ⇒not possible,  since LHS=odd ≥3, RHS=even≤2    y−1=2p, x−z^2 =1  y=2p+1, x=z^2 +1  z^2 +1+(2p+1)z^2 =p+4  2(p+1)z^2 =p+3  (p+1)(2z^2 −1)=2 ⇒not possible,  since LHS≥3     y−1=2, x−z^2 =p  y=3, x=z^2 +p  z^2 +p+3z^2 =p+4  z^2 =1  ⇒z=1, x=1+p ✓    y−1=p, x−z^2 =2  y=p+1, x=z^2 +2  z^2 +2+(p+1)z^2 =p+4  z^2 =1  ⇒z=1, x=3, y=p+1 ✓    summary of solution:  x=3, y=p+1, z=1  x=p+1, y=3, z=1

$$\left({i}\right)−\left({ii}\right): \\ $$$${x}\left({y}−\mathrm{1}\right)+{z}^{\mathrm{2}} \left(\mathrm{1}−{y}\right)=\mathrm{2}{p} \\ $$$$\left({x}−{z}^{\mathrm{2}} \right)\left({y}−\mathrm{1}\right)=\mathrm{2}{p}=\begin{cases}{\mathrm{1}×\mathrm{2}{p}}\\{\mathrm{2}×{p}}\end{cases} \\ $$$$ \\ $$$${y}−\mathrm{1}=\mathrm{1},\:{x}−{z}^{\mathrm{2}} =\mathrm{2}{p} \\ $$$${y}=\mathrm{2},\:{x}={z}^{\mathrm{2}} +\mathrm{2}{p} \\ $$$${z}^{\mathrm{2}} +\mathrm{2}{p}+\mathrm{2}{z}^{\mathrm{2}} ={p}+\mathrm{4} \\ $$$$\mathrm{3}{z}^{\mathrm{2}} =\mathrm{4}−{p}\:\Rightarrow{not}\:{possible}, \\ $$$${since}\:{LHS}={odd}\:\geqslant\mathrm{3},\:{RHS}={even}\leqslant\mathrm{2} \\ $$$$ \\ $$$${y}−\mathrm{1}=\mathrm{2}{p},\:{x}−{z}^{\mathrm{2}} =\mathrm{1} \\ $$$${y}=\mathrm{2}{p}+\mathrm{1},\:{x}={z}^{\mathrm{2}} +\mathrm{1} \\ $$$${z}^{\mathrm{2}} +\mathrm{1}+\left(\mathrm{2}{p}+\mathrm{1}\right){z}^{\mathrm{2}} ={p}+\mathrm{4} \\ $$$$\mathrm{2}\left({p}+\mathrm{1}\right){z}^{\mathrm{2}} ={p}+\mathrm{3} \\ $$$$\left({p}+\mathrm{1}\right)\left(\mathrm{2}{z}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{2}\:\Rightarrow{not}\:{possible}, \\ $$$${since}\:{LHS}\geqslant\mathrm{3}\: \\ $$$$ \\ $$$${y}−\mathrm{1}=\mathrm{2},\:{x}−{z}^{\mathrm{2}} ={p} \\ $$$${y}=\mathrm{3},\:{x}={z}^{\mathrm{2}} +{p} \\ $$$${z}^{\mathrm{2}} +{p}+\mathrm{3}{z}^{\mathrm{2}} ={p}+\mathrm{4} \\ $$$${z}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{z}=\mathrm{1},\:{x}=\mathrm{1}+{p}\:\checkmark \\ $$$$ \\ $$$${y}−\mathrm{1}={p},\:{x}−{z}^{\mathrm{2}} =\mathrm{2} \\ $$$${y}={p}+\mathrm{1},\:{x}={z}^{\mathrm{2}} +\mathrm{2} \\ $$$${z}^{\mathrm{2}} +\mathrm{2}+\left({p}+\mathrm{1}\right){z}^{\mathrm{2}} ={p}+\mathrm{4} \\ $$$${z}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{z}=\mathrm{1},\:{x}=\mathrm{3},\:{y}={p}+\mathrm{1}\:\checkmark \\ $$$$ \\ $$$${summary}\:{of}\:{solution}: \\ $$$${x}=\mathrm{3},\:{y}={p}+\mathrm{1},\:{z}=\mathrm{1} \\ $$$${x}={p}+\mathrm{1},\:{y}=\mathrm{3},\:{z}=\mathrm{1} \\ $$

Commented by HongKing last updated on 05/Dec/21

very nice thank you dear Sir

$$\mathrm{very}\:\mathrm{nice}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Answered by Rasheed.Sindhi last updated on 06/Dec/21

 { ((xy + z^2  = 3p + 4)),((x + yz^2  = p + 4)) :}    { ((x=((3p + 4−z^2 )/y))),((x= p + 4−yz^2 )) :}  ⇒3p + 4−z^2 =py + 4y−y^2 z^2   y^2 z^2 −z^2 +3p−py+4−4y=0  z^2 (y−1)(y+1)−4(y−1)=p(y−3)   determinant ((((y−1)( z^2 (y+1)−4 )=p(y−3))))  •∴ y−1=p ∧ z^2 (y+1)−4=y−3  y=p+1 ∧ z^2 (p+1+1)−4=p+1−3          z^2 =((p+2)/(p+2))=1⇒z=1  x=p+4−(p+1)(1)=3  (x,y,z)=(3,p+1,1)  • (y−1)∣(y−3)⇒((y−3)/(y−1))∈{0,1,2,...}  y−1=±1 or y−3=0  y=2,0,3      y=2 ⇒ z^2 (2+1)−4=p(2−3)       z^2 =((−p+4)/3)⇒z=(√((4−p)/3)) ⇒p=1∉P       y≠0 ∵ x=((3p + 4−z^2 )/y)  y=3 ⇒ (3−1)( z^2 (3+1)−4 )=p(3−3)                 z^2 −1=0⇒z=1           x= p + 4−yz^2 =p+4−(3)(1)^2           x=p+1     (x,y,z)=(p+1,3,1)

$$\begin{cases}{\mathrm{xy}\:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{3p}\:+\:\mathrm{4}}\\{\mathrm{x}\:+\:\mathrm{yz}^{\mathrm{2}} \:=\:\mathrm{p}\:+\:\mathrm{4}}\end{cases}\: \\ $$$$\begin{cases}{\mathrm{x}=\frac{\mathrm{3p}\:+\:\mathrm{4}−\mathrm{z}^{\mathrm{2}} }{\mathrm{y}}}\\{\mathrm{x}=\:\mathrm{p}\:+\:\mathrm{4}−\mathrm{yz}^{\mathrm{2}} }\end{cases}\:\:\Rightarrow\mathrm{3p}\:+\:\mathrm{4}−\mathrm{z}^{\mathrm{2}} =\mathrm{py}\:+\:\mathrm{4y}−\mathrm{y}^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} \\ $$$$\mathrm{y}^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} +\mathrm{3p}−\mathrm{py}+\mathrm{4}−\mathrm{4y}=\mathrm{0} \\ $$$$\mathrm{z}^{\mathrm{2}} \left(\mathrm{y}−\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)−\mathrm{4}\left(\mathrm{y}−\mathrm{1}\right)=\mathrm{p}\left(\mathrm{y}−\mathrm{3}\right) \\ $$$$\begin{array}{|c|}{\left(\mathrm{y}−\mathrm{1}\right)\left(\:\mathrm{z}^{\mathrm{2}} \left(\mathrm{y}+\mathrm{1}\right)−\mathrm{4}\:\right)=\mathrm{p}\left(\mathrm{y}−\mathrm{3}\right)}\\\hline\end{array} \\ $$$$\bullet\therefore\:\mathrm{y}−\mathrm{1}=\mathrm{p}\:\wedge\:\mathrm{z}^{\mathrm{2}} \left(\mathrm{y}+\mathrm{1}\right)−\mathrm{4}=\mathrm{y}−\mathrm{3} \\ $$$$\underline{\mathrm{y}=\mathrm{p}+\mathrm{1}}\:\wedge\:\mathrm{z}^{\mathrm{2}} \left(\mathrm{p}+\mathrm{1}+\mathrm{1}\right)−\mathrm{4}=\mathrm{p}+\mathrm{1}−\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{z}^{\mathrm{2}} =\frac{\mathrm{p}+\mathrm{2}}{\mathrm{p}+\mathrm{2}}=\mathrm{1}\Rightarrow\mathrm{z}=\mathrm{1} \\ $$$$\mathrm{x}=\mathrm{p}+\mathrm{4}−\left(\mathrm{p}+\mathrm{1}\right)\left(\mathrm{1}\right)=\mathrm{3} \\ $$$$\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\left(\mathrm{3},\mathrm{p}+\mathrm{1},\mathrm{1}\right) \\ $$$$\bullet\:\left(\mathrm{y}−\mathrm{1}\right)\mid\left(\mathrm{y}−\mathrm{3}\right)\Rightarrow\frac{\mathrm{y}−\mathrm{3}}{\mathrm{y}−\mathrm{1}}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},...\right\} \\ $$$$\mathrm{y}−\mathrm{1}=\pm\mathrm{1}\:\mathrm{or}\:\mathrm{y}−\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{y}=\mathrm{2},\mathrm{0},\mathrm{3} \\ $$$$\:\:\:\:\mathrm{y}=\mathrm{2}\:\Rightarrow\:\mathrm{z}^{\mathrm{2}} \left(\mathrm{2}+\mathrm{1}\right)−\mathrm{4}=\mathrm{p}\left(\mathrm{2}−\mathrm{3}\right) \\ $$$$\:\:\:\:\:\mathrm{z}^{\mathrm{2}} =\frac{−\mathrm{p}+\mathrm{4}}{\mathrm{3}}\Rightarrow\mathrm{z}=\sqrt{\frac{\mathrm{4}−\mathrm{p}}{\mathrm{3}}}\:\Rightarrow\mathrm{p}=\mathrm{1}\notin\mathbb{P} \\ $$$$\:\:\:\:\:\mathrm{y}\neq\mathrm{0}\:\because\:\mathrm{x}=\frac{\mathrm{3p}\:+\:\mathrm{4}−\mathrm{z}^{\mathrm{2}} }{\mathrm{y}} \\ $$$$\underline{\mathrm{y}=\mathrm{3}}\:\Rightarrow\:\left(\mathrm{3}−\mathrm{1}\right)\left(\:\mathrm{z}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{1}\right)−\mathrm{4}\:\right)=\mathrm{p}\left(\mathrm{3}−\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{z}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\Rightarrow\mathrm{z}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{x}=\:\mathrm{p}\:+\:\mathrm{4}−\mathrm{yz}^{\mathrm{2}} =\mathrm{p}+\mathrm{4}−\left(\mathrm{3}\right)\left(\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}=\mathrm{p}+\mathrm{1} \\ $$$$\:\:\:\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\left(\mathrm{p}+\mathrm{1},\mathrm{3},\mathrm{1}\right) \\ $$

Commented by mr W last updated on 06/Dec/21

just for discussion sir:  in   determinant ((((y−1)( z^2 (y+1)−4 )=p(y−3))))  we are not sure if y−3 is prime. if  it is not prime, it can contain more  factors, then there are much more   possibilities.

$${just}\:{for}\:{discussion}\:{sir}: \\ $$$${in} \\ $$$$\begin{array}{|c|}{\left(\mathrm{y}−\mathrm{1}\right)\left(\:\mathrm{z}^{\mathrm{2}} \left(\mathrm{y}+\mathrm{1}\right)−\mathrm{4}\:\right)=\mathrm{p}\left(\mathrm{y}−\mathrm{3}\right)}\\\hline\end{array} \\ $$$${we}\:{are}\:{not}\:{sure}\:{if}\:{y}−\mathrm{3}\:{is}\:{prime}.\:{if} \\ $$$${it}\:{is}\:{not}\:{prime},\:{it}\:{can}\:{contain}\:{more} \\ $$$${factors},\:{then}\:{there}\:{are}\:{much}\:{more}\: \\ $$$${possibilities}. \\ $$

Commented by Rasheed.Sindhi last updated on 06/Dec/21

Yes sir I realized it.Now I′m going  to change my answer in this light.  Thanks to guide me sir!Please see  my answer once more.

$${Yes}\:{sir}\:{I}\:{realized}\:{it}.{Now}\:{I}'{m}\:{going} \\ $$$${to}\:{change}\:{my}\:{answer}\:{in}\:{this}\:{light}. \\ $$$$\mathcal{T}{hanks}\:{to}\:{guide}\:{me}\:{sir}!{Please}\:{see} \\ $$$${my}\:{answer}\:{once}\:{more}. \\ $$

Commented by mr W last updated on 08/Dec/21

very good sir!

$${very}\:{good}\:{sir}! \\ $$

Commented by Rasheed.Sindhi last updated on 09/Dec/21

Grateful sir!

$${Grateful}\:\boldsymbol{{sir}}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com