All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 160792 by cortano last updated on 06/Dec/21
∫secx1+2secxcosecx−cotxcosecx+cotxdx=?
Answered by chhaythean last updated on 06/Dec/21
=∫1cosxcosx+2cosx×1−cosxsinx1+cosxsinxdx=∫1cosxcosx+2cosx×1−cosx1+cosxdx=∫sinxcos2x+2cosx×11+cosxdx=∫sinx(cosx+1)2−1(1+cosx)dxletu=1+cosx⇒du=−sinxdx=−∫duu2−1×uletu=secy⇒du=secytanydy=−∫secytanytanysecydy=−y+c=−arcsec(u)+c=−arcsec(1+cosx)+cSo∫secx1+2secx×cosecx−cotxcosecx+cotxdx=−arcsec(1+cosx)+c
Answered by MJS_new last updated on 06/Dec/21
letc=cosx→dx=−dc1−c2nowwehave−∫dc(c+1)cc+2=[t=c+2c→dc=−c3c+2dt]=2∫dtt2+1=2arctant=2arctanc+2c==2arctan2+cosxcosx+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com