Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 1608 by 112358 last updated on 26/Aug/15

Find the limit of this sequence.  (√2),(√(2(√2))),(√(2(√(2(√2))))),(√(2(√(2(√(2(√2))))))),...  Show that the sum of the  terms of this infinite sequence  does not converge.

$${Find}\:{the}\:{limit}\:{of}\:{this}\:{sequence}. \\ $$$$\sqrt{\mathrm{2}},\sqrt{\mathrm{2}\sqrt{\mathrm{2}}},\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}},\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}},... \\ $$$${Show}\:{that}\:{the}\:{sum}\:{of}\:{the} \\ $$$${terms}\:{of}\:{this}\:{infinite}\:{sequence} \\ $$$${does}\:{not}\:{converge}. \\ $$

Commented by Rasheed Ahmad last updated on 26/Aug/15

Let (√(2(√(2(√(2(√(2...))))))))=x  Squaring both sides,           2(√(2(√(2(√(2...))))))=x^2            2.x=x^2           x=2  The limit of the sequence=2

$${Let}\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}...}}}}={x} \\ $$$${Squaring}\:{both}\:{sides}, \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}...}}}={x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}.{x}={x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{x}=\mathrm{2} \\ $$$${The}\:{limit}\:{of}\:{the}\:{sequence}=\mathrm{2} \\ $$$$ \\ $$

Commented by 112358 last updated on 26/Aug/15

Indeed it is! L=2 .

$${Indeed}\:{it}\:{is}!\:{L}=\mathrm{2}\:. \\ $$

Answered by 123456 last updated on 26/Aug/15

a_n =(√(2a_(n−1) ))  a_0 =(√2)  a_n >0⇒2a_n >0⇒(√(2a_n ))>0⇒a_(n+1) >0  0<a_n <2⇒0<2a_n <4⇒0<(√(2a_n ))<2⇒0<a_(n+1) <2  0<a_n <a_(n+1) <2⇒0<2a_n <2a_(n+1) <4⇒0<(√(2a_n ))<(√(2a_(n+1) ))<2⇒0<a_(n+1) <a_(n+2) <2  0<a_(n+1) <a_n <2⇒0<2a_(n+1) <2a_n <4⇒0<(√(2a_(n+1) ))<(√(2a_n ))<2⇒0<a_(n+2) <a_(n+1) <2  a_0 =(√2),a_1 =(√(2(√2)))⇒a_1 >a_0 , the a is crescent  since a is bounced and crescent, lim_(n→+∞)  a_n  exists  a_(n+1) =a_n =a  a=(√(2a))⇒a^2 =2a⇒a(a−2)=0⇒a=0∨a=2  since it crescent them a=2,lim_(n→+∞)  a_n =a=2  S=Σ_(n=0) ^(+∞) a_n   since lim_(n→+∞)  a_n ≠0, then the serie diverge

$${a}_{{n}} =\sqrt{\mathrm{2}{a}_{{n}−\mathrm{1}} } \\ $$$${a}_{\mathrm{0}} =\sqrt{\mathrm{2}} \\ $$$${a}_{{n}} >\mathrm{0}\Rightarrow\mathrm{2}{a}_{{n}} >\mathrm{0}\Rightarrow\sqrt{\mathrm{2}{a}_{{n}} }>\mathrm{0}\Rightarrow{a}_{{n}+\mathrm{1}} >\mathrm{0} \\ $$$$\mathrm{0}<{a}_{{n}} <\mathrm{2}\Rightarrow\mathrm{0}<\mathrm{2}{a}_{{n}} <\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}{a}_{{n}} }<\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{1}} <\mathrm{2} \\ $$$$\mathrm{0}<{a}_{{n}} <{a}_{{n}+\mathrm{1}} <\mathrm{2}\Rightarrow\mathrm{0}<\mathrm{2}{a}_{{n}} <\mathrm{2}{a}_{{n}+\mathrm{1}} <\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}{a}_{{n}} }<\sqrt{\mathrm{2}{a}_{{n}+\mathrm{1}} }<\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{1}} <{a}_{{n}+\mathrm{2}} <\mathrm{2} \\ $$$$\mathrm{0}<{a}_{{n}+\mathrm{1}} <{a}_{{n}} <\mathrm{2}\Rightarrow\mathrm{0}<\mathrm{2}{a}_{{n}+\mathrm{1}} <\mathrm{2}{a}_{{n}} <\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}{a}_{{n}+\mathrm{1}} }<\sqrt{\mathrm{2}{a}_{{n}} }<\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{2}} <{a}_{{n}+\mathrm{1}} <\mathrm{2} \\ $$$${a}_{\mathrm{0}} =\sqrt{\mathrm{2}},{a}_{\mathrm{1}} =\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}\Rightarrow{a}_{\mathrm{1}} >{a}_{\mathrm{0}} ,\:\mathrm{the}\:{a}\:\mathrm{is}\:\mathrm{crescent} \\ $$$$\mathrm{since}\:{a}\:\mathrm{is}\:\mathrm{bounced}\:\mathrm{and}\:\mathrm{crescent},\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{a}_{{n}} \:\mathrm{exists} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} ={a} \\ $$$${a}=\sqrt{\mathrm{2}{a}}\Rightarrow{a}^{\mathrm{2}} =\mathrm{2}{a}\Rightarrow{a}\left({a}−\mathrm{2}\right)=\mathrm{0}\Rightarrow{a}=\mathrm{0}\vee{a}=\mathrm{2} \\ $$$$\mathrm{since}\:\mathrm{it}\:\mathrm{crescent}\:\mathrm{them}\:{a}=\mathrm{2},\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{a}_{{n}} ={a}=\mathrm{2} \\ $$$$\mathrm{S}=\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{n}} \\ $$$$\mathrm{since}\:\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\:{a}_{{n}} \neq\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{serie}\:\mathrm{diverge} \\ $$

Commented by Rasheed Ahmad last updated on 27/Aug/15

What is meant by ′crescent′?  I am asking for the sake of  knowledge.

$${What}\:{is}\:{meant}\:{by}\:'{crescent}'? \\ $$$${I}\:{am}\:{asking}\:{for}\:{the}\:{sake}\:{of} \\ $$$${knowledge}. \\ $$

Commented by 123456 last updated on 27/Aug/15

growing or something like this (sorry about my bad english)  as shown  0<a_n <a_(n+1) <2⇒0<a_(n+1) <a_(n+2) <2  since 0<a_0 <a_1 <2, them (0<2<2(√2)<4⇒0<(√2)<(√(2(√2)))<2)  0<a_0 <a_1 <a_2 <a_3 <∙∙∙<2

$$\mathrm{growing}\:\mathrm{or}\:\mathrm{something}\:\mathrm{like}\:\mathrm{this}\:\left(\mathrm{sorry}\:\mathrm{about}\:\mathrm{my}\:\mathrm{bad}\:\mathrm{english}\right) \\ $$$$\mathrm{as}\:\mathrm{shown} \\ $$$$\mathrm{0}<{a}_{{n}} <{a}_{{n}+\mathrm{1}} <\mathrm{2}\Rightarrow\mathrm{0}<{a}_{{n}+\mathrm{1}} <{a}_{{n}+\mathrm{2}} <\mathrm{2} \\ $$$$\mathrm{since}\:\mathrm{0}<{a}_{\mathrm{0}} <{a}_{\mathrm{1}} <\mathrm{2},\:\mathrm{them}\:\left(\mathrm{0}<\mathrm{2}<\mathrm{2}\sqrt{\mathrm{2}}<\mathrm{4}\Rightarrow\mathrm{0}<\sqrt{\mathrm{2}}<\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}<\mathrm{2}\right) \\ $$$$\mathrm{0}<{a}_{\mathrm{0}} <{a}_{\mathrm{1}} <{a}_{\mathrm{2}} <{a}_{\mathrm{3}} <\centerdot\centerdot\centerdot<\mathrm{2} \\ $$

Commented by 112358 last updated on 27/Aug/15

He/she′s saying that the terms   of the sequence are perpetually  increasing to a limiting value of   2. Hence, the sequence is  monotonic and upper bounded.  i.e  a_n ≤M for all  n  and  a_(n+1) ≥a_n  for all  n.  Generally, all sequences which  are monotonic (only increasing  or decreasing but not both) and bounded  (upper or lower[a_n >M  for any  finite n]) are convergent. This  is called the monotonic   sequence theorem.

$${He}/{she}'{s}\:{saying}\:{that}\:{the}\:{terms}\: \\ $$$${of}\:{the}\:{sequence}\:{are}\:{perpetually} \\ $$$${increasing}\:{to}\:{a}\:{limiting}\:{value}\:{of}\: \\ $$$$\mathrm{2}.\:{Hence},\:{the}\:{sequence}\:{is} \\ $$$${monotonic}\:{and}\:{upper}\:{bounded}. \\ $$$${i}.{e}\:\:{a}_{{n}} \leqslant{M}\:{for}\:{all}\:\:{n}\:\:{and} \\ $$$${a}_{{n}+\mathrm{1}} \geqslant{a}_{{n}} \:{for}\:{all}\:\:{n}. \\ $$$${Generally},\:{all}\:{sequences}\:{which} \\ $$$${are}\:{monotonic}\:\left({only}\:{increasing}\right. \\ $$$$\left.{or}\:{decreasing}\:{but}\:{not}\:{both}\right)\:{and}\:{bounded} \\ $$$$\left({upper}\:{or}\:{lower}\left[{a}_{{n}} >{M}\:\:{for}\:{any}\right.\right. \\ $$$$\left.{f}\left.{inite}\:{n}\right]\right)\:{are}\:{convergent}.\:{This} \\ $$$${is}\:{called}\:{the}\:{monotonic}\: \\ $$$${sequence}\:{theorem}. \\ $$

Commented by Rasheed Ahmad last updated on 27/Aug/15

Thanks to both of you!

$$\boldsymbol{\mathrm{Thanks}}\:\mathrm{to}\:\mathrm{both}\:\mathrm{of}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com