Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 160815 by cortano last updated on 07/Dec/21

    sec (3x)−6cos (3x)=4sin (3x)      find the solution

$$\:\:\:\:\mathrm{sec}\:\left(\mathrm{3x}\right)−\mathrm{6cos}\:\left(\mathrm{3x}\right)=\mathrm{4sin}\:\left(\mathrm{3x}\right) \\ $$$$\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$

Commented by blackmamba last updated on 07/Dec/21

 ⇒(1/(cos 3x)) −6cos 3x = 4sin 3x   ⇒(1/t) − 6t = 4(√(1−t^2 )) ; [ t = cos 3x ]  ⇒1−6t^2  = 4t (√(1−t^2 ))  ⇒1−12t^2 +36t^4 = 16t^2 (1−t^2 )  ⇒52t^4 −28t^2 +1 = 0  ⇒t^2  = ((28+(√(28^2 −4×52)))/(104))=((28+24)/(104))  ⇒t^2 = (1/2); t=± (1/2)(√2)  case(1) t=(1/2)(√2) ⇒cos 3x=cos 45°  ⇒x=±15°+k.120°  case(2)t=−(1/2)(√2) ⇒cos 3x=cos 135°  ⇒x=±45°+k.120°

$$\:\Rightarrow\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{3}{x}}\:−\mathrm{6cos}\:\mathrm{3}{x}\:=\:\mathrm{4sin}\:\mathrm{3}{x}\: \\ $$$$\Rightarrow\frac{\mathrm{1}}{{t}}\:−\:\mathrm{6}{t}\:=\:\mathrm{4}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\:;\:\left[\:{t}\:=\:\mathrm{cos}\:\mathrm{3}{x}\:\right] \\ $$$$\Rightarrow\mathrm{1}−\mathrm{6}{t}^{\mathrm{2}} \:=\:\mathrm{4}{t}\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{1}−\mathrm{12}{t}^{\mathrm{2}} +\mathrm{36}{t}^{\mathrm{4}} =\:\mathrm{16}{t}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{52}{t}^{\mathrm{4}} −\mathrm{28}{t}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0} \\ $$$$\Rightarrow{t}^{\mathrm{2}} \:=\:\frac{\mathrm{28}+\sqrt{\mathrm{28}^{\mathrm{2}} −\mathrm{4}×\mathrm{52}}}{\mathrm{104}}=\frac{\mathrm{28}+\mathrm{24}}{\mathrm{104}} \\ $$$$\Rightarrow{t}^{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{2}};\:{t}=\pm\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}} \\ $$$${case}\left(\mathrm{1}\right)\:{t}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{cos}\:\mathrm{3}{x}=\mathrm{cos}\:\mathrm{45}° \\ $$$$\Rightarrow{x}=\pm\mathrm{15}°+{k}.\mathrm{120}° \\ $$$${case}\left(\mathrm{2}\right){t}=−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{cos}\:\mathrm{3}{x}=\mathrm{cos}\:\mathrm{135}° \\ $$$$\Rightarrow{x}=\pm\mathrm{45}°+{k}.\mathrm{120}° \\ $$

Answered by mr W last updated on 08/Dec/21

(1/(cos 3x))−6 cos 3x=4 sin 3x  1−6 cos^2  3x=4 sin 3x cos 3x  1−3(cos 6x+1)=2 sin 6x  2 sin 6x+3 cos 6x=−2  (2/( (√(13)))) sin 6x+(3/( (√(13)))) cos 6x=−(2/( (√(13))))  with α=tan^(−1) (3/2)  sin (6x+α)=−cos α=−sin ((π/2)−α)  6x+α=nπ−(−1)^n ((π/2)−α)  ⇒x=(1/6){nπ−(−1)^n (π/2)+[(−1)^n −1]tan^(−1) (3/2)}  = { ((((4k−1)π)/(12))),(((((4k+3)π)/(12))−(1/3) tan^(−1) (3/2))) :}

$$\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{3}{x}}−\mathrm{6}\:\mathrm{cos}\:\mathrm{3}{x}=\mathrm{4}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\mathrm{1}−\mathrm{6}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{3}{x}=\mathrm{4}\:\mathrm{sin}\:\mathrm{3}{x}\:\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\mathrm{1}−\mathrm{3}\left(\mathrm{cos}\:\mathrm{6}{x}+\mathrm{1}\right)=\mathrm{2}\:\mathrm{sin}\:\mathrm{6}{x} \\ $$$$\mathrm{2}\:\mathrm{sin}\:\mathrm{6}{x}+\mathrm{3}\:\mathrm{cos}\:\mathrm{6}{x}=−\mathrm{2} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\:\mathrm{sin}\:\mathrm{6}{x}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\:\mathrm{cos}\:\mathrm{6}{x}=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}} \\ $$$${with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\left(\mathrm{6}{x}+\alpha\right)=−\mathrm{cos}\:\alpha=−\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\mathrm{6}{x}+\alpha={n}\pi−\left(−\mathrm{1}\right)^{{n}} \left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{6}}\left\{{n}\pi−\left(−\mathrm{1}\right)^{{n}} \frac{\pi}{\mathrm{2}}+\left[\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right]\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}}\right\} \\ $$$$=\begin{cases}{\frac{\left(\mathrm{4}{k}−\mathrm{1}\right)\pi}{\mathrm{12}}}\\{\frac{\left(\mathrm{4}{k}+\mathrm{3}\right)\pi}{\mathrm{12}}−\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com