Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 160895 by HongKing last updated on 08/Dec/21

Prove that:  ∫_( 0) ^( 1)  ((ln(x))/(x^n  + x^(n-1)  + ... + 1)) dx = (1/n^2 ) [𝛙^((1)) ((2/n)) - 𝛙^((1)) ((1/n))]

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{x}^{\boldsymbol{\mathrm{n}}-\mathrm{1}} \:+\:...\:+\:\mathrm{1}}\:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:\left[\boldsymbol{\psi}^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{2}}{\mathrm{n}}\right)\:-\:\boldsymbol{\psi}^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right] \\ $$

Answered by Kamel last updated on 08/Dec/21

Ω_n =∫_0 ^1 ((Ln(x)(1−x))/(1−x^n ))dx=[(d/ds)∫_0 ^1 ((x^s −x^(s+1) )/(1−x^n ))dx]_(s=0)         =^(t=x^n ) (1/n)[(d/ds_ )∫_0 ^1 ((t^(((s+1)/n)−1) −1+1−t^(((s+2)/n)−1) )/(1−t))dt]_(s=0) =(1/n^2 )(Ψ^((1)) ((2/n))−Ψ^((1)) ((1/n)))

$$\Omega_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{Ln}\left({x}\right)\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}^{{n}} }{dx}=\left[\frac{{d}}{{ds}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{s}} −{x}^{{s}+\mathrm{1}} }{\mathrm{1}−{x}^{{n}} }{dx}\right]_{{s}=\mathrm{0}} \\ $$$$\:\:\:\:\:\:\overset{{t}={x}^{{n}} } {=}\frac{\mathrm{1}}{{n}}\left[\frac{{d}}{{d}\underset{} {{s}}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{s}+\mathrm{1}}{{n}}−\mathrm{1}} −\mathrm{1}+\mathrm{1}−{t}^{\frac{{s}+\mathrm{2}}{{n}}−\mathrm{1}} }{\mathrm{1}−{t}}{dt}\right]_{{s}=\mathrm{0}} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\Psi^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{2}}{{n}}\right)−\Psi^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{1}}{{n}}\right)\right) \\ $$

Commented by HongKing last updated on 10/Dec/21

thank you so much dear Sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com