Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 160953 by SANOGO last updated on 09/Dec/21

∫_o ^(+oo)  ((tlnt)/((1+t)^2 ))      etudier la convergence

$$\int_{{o}} ^{+{oo}} \:\frac{{tlnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\:\:\:\: \\ $$$${etudier}\:{la}\:{convergence} \\ $$

Answered by ArielVyny last updated on 10/Dec/21

f(t)=((tln(t))/((1+t)^2 ))  t>0 Df=]0;+∞[  lim f(t)_(t→+∞) =lim((tlnt)/((1+t)^2 ))∼lim(t/t^2 ) =0(par croissance compare)  lim f(t)_(t→0) =lim_(t→0) ((tlnt)/((1+t)^2 ))=0  donc f admet prolongement par continuite  en 0   conclusion lim f(t)_(t→+∞) =0;lim f(t)_(t→0) =0  d′ou ∫_0 ^∞ ((tlnt)/((1+t)^2 ))dt  ∫_a ^b f(t)dt converge avec a et appartenant   [−∞;+∞] si f est continue sur l′inerval et  lim f(t)_(t→a)  et lim f(t)_(t→b)  existent

$$\left.{f}\left({t}\right)=\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\:\:{t}>\mathrm{0}\:{Df}=\right]\mathrm{0};+\infty\left[\right. \\ $$$${lim}\:{f}\left({t}\right)_{{t}\rightarrow+\infty} ={lim}\frac{{tlnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\sim{lim}\frac{{t}}{{t}^{\mathrm{2}} }\:=\mathrm{0}\left({par}\:{croissance}\:{compare}\right) \\ $$$${lim}\:{f}\left({t}\right)_{{t}\rightarrow\mathrm{0}} ={lim}_{{t}\rightarrow\mathrm{0}} \frac{{tlnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$${donc}\:{f}\:{admet}\:{prolongement}\:{par}\:{continuite} \\ $$$${en}\:\mathrm{0}\: \\ $$$${conclusion}\:{lim}\:{f}\left({t}\right)_{{t}\rightarrow+\infty} =\mathrm{0};{lim}\:{f}\left({t}\right)_{{t}\rightarrow\mathrm{0}} =\mathrm{0} \\ $$$${d}'{ou}\:\int_{\mathrm{0}} ^{\infty} \frac{{tlnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$\int_{{a}} ^{{b}} {f}\left({t}\right){dt}\:{converge}\:{avec}\:{a}\:{et}\:{appartenant}\: \\ $$$$\left[−\infty;+\infty\right]\:{si}\:{f}\:{est}\:{continue}\:{sur}\:{l}'{inerval}\:{et} \\ $$$${lim}\:{f}\left({t}\right)_{{t}\rightarrow{a}} \:{et}\:{lim}\:{f}\left({t}\right)_{{t}\rightarrow{b}} \:{existent} \\ $$

Commented by SANOGO last updated on 11/Dec/21

merci bien

$${merci}\:{bien} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com