Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 160993 by gbanda95 last updated on 10/Dec/21

Answered by mathmax by abdo last updated on 10/Dec/21

∫_0 ^(π/2)  x^3 sinx dx =I_3 =3((π/2))^2 −3(3−1)I_1 =((3π^2 )/4)−6I_1   I_1 =∫_0 ^(π/2) xsinx dx =[−xcosx]_0 ^(π/2) +∫_0 ^(π/2) cosxdx  =[sinx]_0 ^(π/2)  =1 ⇒∫_0 ^(π/2)  x^3 sinx dx =((3π^2 )/4)−6

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{x}^{\mathrm{3}} \mathrm{sinx}\:\mathrm{dx}\:=\mathrm{I}_{\mathrm{3}} =\mathrm{3}\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{3}\left(\mathrm{3}−\mathrm{1}\right)\mathrm{I}_{\mathrm{1}} =\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{6I}_{\mathrm{1}} \\ $$$$\mathrm{I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{xsinx}\:\mathrm{dx}\:=\left[−\mathrm{xcosx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cosxdx} \\ $$$$=\left[\mathrm{sinx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\mathrm{1}\:\Rightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{x}^{\mathrm{3}} \mathrm{sinx}\:\mathrm{dx}\:=\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{6} \\ $$

Answered by mathmax by abdo last updated on 10/Dec/21

∫_0 ^1 x^3 dx=lim_(n→+∞)   (1/n)Σ_(k=1) ^n ((k/n))^3  =lim_(n→+∞) (1/n^4 )Σ_(k=1) ^n  k^3   =lim_(n→+∞) ((n^2 (n+1)^2 )/(4n^4 )) =lim_(n→+∞) (n^4 /(4n^4 ))=(1/4)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{3}} \mathrm{dx}=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{3}} \:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{k}^{\mathrm{3}} \\ $$$$=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4n}^{\mathrm{4}} }\:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{n}^{\mathrm{4}} }{\mathrm{4n}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Answered by mathmax by abdo last updated on 10/Dec/21

I_n =∫_0 ^(π/2)  x^n sinx dx  by parts  u=x^n  and v^′  =sinx  I_n =[−x^n cosx]_0 ^(π/2)  +∫_0 ^(π/2)   nx^(n−1) cosx dx  =n{  [x^(n−1) sinx]_0 ^(π/2) −∫_0 ^(π/2) (n−1)x^(n−2) sinx dx}  =n((π/2))^(n−1) −n(n−1)I_(n−2)     with n≥2

$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{x}^{\mathrm{n}} \mathrm{sinx}\:\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\:\:\mathrm{u}=\mathrm{x}^{\mathrm{n}} \:\mathrm{and}\:\mathrm{v}^{'} \:=\mathrm{sinx} \\ $$$$\mathrm{I}_{\mathrm{n}} =\left[−\mathrm{x}^{\mathrm{n}} \mathrm{cosx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\mathrm{nx}^{\mathrm{n}−\mathrm{1}} \mathrm{cosx}\:\mathrm{dx} \\ $$$$=\mathrm{n}\left\{\:\:\left[\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{sinx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{n}−\mathrm{2}} \mathrm{sinx}\:\mathrm{dx}\right\} \\ $$$$=\mathrm{n}\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{n}−\mathrm{1}} −\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\mathrm{I}_{\mathrm{n}−\mathrm{2}} \:\:\:\:\mathrm{with}\:\mathrm{n}\geqslant\mathrm{2} \\ $$

Answered by mathmax by abdo last updated on 10/Dec/21

u_(n+1) =(1/2)(u_n +(2/u_n ))  with u_1 =1  by recurrence  u_2 =(1/2)(u_1 +(2/u_1 ))=(1/2)(3)=(3/2)>(√2) (true)  let suppose u_n >(√2) ⇒u_(n+1) −(√2)=(1/2)(u_n +(2/u_n ))−(√2)  =(1/2)(((u_n ^2 +2)/u_n ))−(√2)=(1/2)×((u_n ^2 +2−2(√2)u_n )/u_n )=(1/(2u_n ))(u_n −(√2))^2 >0 ⇒  u_(n+1) >(√2)

$$\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{u}_{\mathrm{n}} +\frac{\mathrm{2}}{\mathrm{u}_{\mathrm{n}} }\right)\:\:\mathrm{with}\:\mathrm{u}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{by}\:\mathrm{recurrence} \\ $$$$\mathrm{u}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{u}_{\mathrm{1}} +\frac{\mathrm{2}}{\mathrm{u}_{\mathrm{1}} }\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}\right)=\frac{\mathrm{3}}{\mathrm{2}}>\sqrt{\mathrm{2}}\:\left(\mathrm{true}\right) \\ $$$$\mathrm{let}\:\mathrm{suppose}\:\mathrm{u}_{\mathrm{n}} >\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{u}_{\mathrm{n}+\mathrm{1}} −\sqrt{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{u}_{\mathrm{n}} +\frac{\mathrm{2}}{\mathrm{u}_{\mathrm{n}} }\right)−\sqrt{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} +\mathrm{2}}{\mathrm{u}_{\mathrm{n}} }\right)−\sqrt{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} +\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{u}_{\mathrm{n}} }{\mathrm{u}_{\mathrm{n}} }=\frac{\mathrm{1}}{\mathrm{2u}_{\mathrm{n}} }\left(\mathrm{u}_{\mathrm{n}} −\sqrt{\mathrm{2}}\right)^{\mathrm{2}} >\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{u}_{\mathrm{n}+\mathrm{1}} >\sqrt{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com