Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 161015 by mr W last updated on 10/Dec/21

Commented by mr W last updated on 11/Dec/21

The distances from the orthocenter  to the vertexes of a triangle are  p, q, r respectively. Find the side  lengthes of the triangle.

$${The}\:{distances}\:{from}\:{the}\:{orthocenter} \\ $$$${to}\:{the}\:{vertexes}\:{of}\:{a}\:{triangle}\:{are} \\ $$$$\boldsymbol{{p}},\:\boldsymbol{{q}},\:\boldsymbol{{r}}\:{respectively}.\:{Find}\:{the}\:{side} \\ $$$${lengthes}\:{of}\:{the}\:{triangle}. \\ $$

Answered by mr W last updated on 11/Dec/21

Commented by mr W last updated on 14/Dec/21

(p/v)=(q/u) ⇒pu=qv  (p/w)=(r/u) ⇒pu=rw  ⇒ determinant (((pu=qv=rw)))=(1/k), say  ⇒u=(1/(pk)), v=(1/(qk)), w=(1/(rk))    say the area of triangle ABC is Δ  and the side lengthes are a, b, c.  Δ=(1/2)a(p+u)=(1/2)b(q+v)=(1/2)c(r+w)  Δ=(1/2)(au+bv+cw)  Δ=(1/2)(((2Δu)/(p+u))+((2Δv)/(q+v))+((2Δw)/(r+w)))  ⇒ determinant ((((u/(p+u))+(v/(q+v))+(w/(r+w))=1)))    (1/((p/u)+1))+(1/((q/v)+1))+(1/((r/w)+1))=1  (1/(p^2 k+1))+(1/(q^2 k+1))+(1/(r^2 k+1))=1  (p^2 k+1)(q^2 k+1)+(q^2 k+1)(r^2 k+1)+(r^2 k+1)(p^2 k+1)=(p^2 k+1)(q^2 k+1)(r^2 k+1)  (p^2 q^2 +q^2 r^2 +r^2 p^2 )k^2 +2(p^2 +q^2 +r^2 )k+3=p^2 q^2 r^2 k^3 +(p^2 q^2 +q^2 r^2 +r^2 p^2 )k^2 +(p^2 +q^2 +r^2 )k+1  p^2 q^2 r^2 k^3 −(p^2 +q^2 +r^2 )k−2=0   determinant (((k^3 −((p^2 +q^2 +r^2 )/(p^2 q^2 r^2 )) k−(2/(p^2 q^2 r^2 ))=0)))  (1/(p^4 q^4 r^4 ))−(1/(27))(((p^2 +q^2 +r^2 )/(p^2 q^2 r^2 )))^3 ≤0 ⇒3 real roots    generally two of the three roots are  suitable.   determinant (((k=(2/(pqr))(√((p^2 +q^2 +r^2 )/3)) sin {((2𝛑)/3)−(1/3) sin^(−1)  [pqr((3/(p^2 +q^2 +r^2 )))^(3/2) ]})),((k=−(2/(pqr))(√((p^2 +q^2 +r^2 )/3)) sin {(𝛑/3)−(1/3) sin^(−1)  [pqr((3/(p^2 +q^2 +r^2 )))^(3/2) ]})))  k>0 for the case that the orthocenter  lies inside the triangle and k<0 for  the case that it lies outside.    with k we can get:  𝚫=(1/( (√(((1/(p+(1/(pk))))+(1/(q+(1/(qk))))+(1/(r+(1/(rk)))))(−(1/(p+(1/(pk))))+(1/(q+(1/(qk))))+(1/(r+(1/(rk)))))((1/(p+(1/(pk))))−(1/(q+(1/(qk))))+(1/(r+(1/(rk)))))((1/(p+(1/(pk))))+(1/(q+(1/(qk))))−(1/(r+(1/(rk)))))))))  a=((2𝚫)/(p+(1/(pk))))  b=((2𝚫)/(q+(1/(qk))))  c=((2𝚫)/(r+(1/(rk))))    example 1: p=7, q=6, r=5  ⇒a≈9.79245055 or 1.56227610  ⇒b≈10.43513717 or 3.92946646  ⇒c≈10.94952454 or 5.14205276  (see first diagram)  example 2: p=q=r=2  ⇒a=b=c≈3.46410162 (=2(√3))

$$\frac{{p}}{{v}}=\frac{{q}}{{u}}\:\Rightarrow{pu}={qv} \\ $$$$\frac{{p}}{{w}}=\frac{{r}}{{u}}\:\Rightarrow{pu}={rw} \\ $$$$\Rightarrow\begin{array}{|c|}{\boldsymbol{{pu}}=\boldsymbol{{qv}}=\boldsymbol{{rw}}}\\\hline\end{array}=\frac{\mathrm{1}}{{k}},\:{say} \\ $$$$\Rightarrow{u}=\frac{\mathrm{1}}{{pk}},\:{v}=\frac{\mathrm{1}}{{qk}},\:{w}=\frac{\mathrm{1}}{{rk}} \\ $$$$ \\ $$$${say}\:{the}\:{area}\:{of}\:{triangle}\:{ABC}\:{is}\:\Delta \\ $$$${and}\:{the}\:{side}\:{lengthes}\:{are}\:{a},\:{b},\:{c}. \\ $$$$\Delta=\frac{\mathrm{1}}{\mathrm{2}}{a}\left({p}+{u}\right)=\frac{\mathrm{1}}{\mathrm{2}}{b}\left({q}+{v}\right)=\frac{\mathrm{1}}{\mathrm{2}}{c}\left({r}+{w}\right) \\ $$$$\Delta=\frac{\mathrm{1}}{\mathrm{2}}\left({au}+{bv}+{cw}\right) \\ $$$$\Delta=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}\Delta{u}}{{p}+{u}}+\frac{\mathrm{2}\Delta{v}}{{q}+{v}}+\frac{\mathrm{2}\Delta{w}}{{r}+{w}}\right) \\ $$$$\Rightarrow\begin{array}{|c|}{\frac{\boldsymbol{{u}}}{\boldsymbol{{p}}+\boldsymbol{{u}}}+\frac{\boldsymbol{{v}}}{\boldsymbol{{q}}+\boldsymbol{{v}}}+\frac{\boldsymbol{{w}}}{\boldsymbol{{r}}+\boldsymbol{{w}}}=\mathrm{1}}\\\hline\end{array} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\frac{{p}}{{u}}+\mathrm{1}}+\frac{\mathrm{1}}{\frac{{q}}{{v}}+\mathrm{1}}+\frac{\mathrm{1}}{\frac{{r}}{{w}}+\mathrm{1}}=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{p}^{\mathrm{2}} {k}+\mathrm{1}}+\frac{\mathrm{1}}{{q}^{\mathrm{2}} {k}+\mathrm{1}}+\frac{\mathrm{1}}{{r}^{\mathrm{2}} {k}+\mathrm{1}}=\mathrm{1} \\ $$$$\left({p}^{\mathrm{2}} {k}+\mathrm{1}\right)\left({q}^{\mathrm{2}} {k}+\mathrm{1}\right)+\left({q}^{\mathrm{2}} {k}+\mathrm{1}\right)\left({r}^{\mathrm{2}} {k}+\mathrm{1}\right)+\left({r}^{\mathrm{2}} {k}+\mathrm{1}\right)\left({p}^{\mathrm{2}} {k}+\mathrm{1}\right)=\left({p}^{\mathrm{2}} {k}+\mathrm{1}\right)\left({q}^{\mathrm{2}} {k}+\mathrm{1}\right)\left({r}^{\mathrm{2}} {k}+\mathrm{1}\right) \\ $$$$\left({p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right){k}^{\mathrm{2}} +\mathrm{2}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){k}+\mathrm{3}={p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} {k}^{\mathrm{3}} +\left({p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right){k}^{\mathrm{2}} +\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){k}+\mathrm{1} \\ $$$${p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} {k}^{\mathrm{3}} −\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){k}−\mathrm{2}=\mathrm{0} \\ $$$$\begin{array}{|c|}{{k}^{\mathrm{3}} −\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }{{p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} }\:{k}−\frac{\mathrm{2}}{{p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} }=\mathrm{0}}\\\hline\end{array} \\ $$$$\frac{\mathrm{1}}{{p}^{\mathrm{4}} {q}^{\mathrm{4}} {r}^{\mathrm{4}} }−\frac{\mathrm{1}}{\mathrm{27}}\left(\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }{{p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} }\right)^{\mathrm{3}} \leqslant\mathrm{0}\:\Rightarrow\mathrm{3}\:{real}\:{roots} \\ $$$$ \\ $$$${generally}\:{two}\:{of}\:{the}\:{three}\:{roots}\:{are} \\ $$$${suitable}. \\ $$$$\begin{array}{|c|c|}{\boldsymbol{{k}}=\frac{\mathrm{2}}{\boldsymbol{{pqr}}}\sqrt{\frac{\boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{r}}^{\mathrm{2}} }{\mathrm{3}}}\:\boldsymbol{\mathrm{sin}}\:\left\{\frac{\mathrm{2}\boldsymbol{\pi}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \:\left[\boldsymbol{{pqr}}\left(\frac{\mathrm{3}}{\boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{r}}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]\right\}}\\{\boldsymbol{{k}}=−\frac{\mathrm{2}}{\boldsymbol{{pqr}}}\sqrt{\frac{\boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{r}}^{\mathrm{2}} }{\mathrm{3}}}\:\boldsymbol{\mathrm{sin}}\:\left\{\frac{\boldsymbol{\pi}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \:\left[\boldsymbol{{pqr}}\left(\frac{\mathrm{3}}{\boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{r}}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]\right\}}\\\hline\end{array} \\ $$$${k}>\mathrm{0}\:{for}\:{the}\:{case}\:{that}\:{the}\:{orthocenter} \\ $$$${lies}\:{inside}\:{the}\:{triangle}\:{and}\:{k}<\mathrm{0}\:{for} \\ $$$${the}\:{case}\:{that}\:{it}\:{lies}\:{outside}. \\ $$$$ \\ $$$${with}\:{k}\:{we}\:{can}\:{get}: \\ $$$$\boldsymbol{\Delta}=\frac{\mathrm{1}}{\:\sqrt{\left(\frac{\mathrm{1}}{\boldsymbol{{p}}+\frac{\mathrm{1}}{\boldsymbol{{pk}}}}+\frac{\mathrm{1}}{\boldsymbol{{q}}+\frac{\mathrm{1}}{\boldsymbol{{qk}}}}+\frac{\mathrm{1}}{\boldsymbol{{r}}+\frac{\mathrm{1}}{\boldsymbol{{rk}}}}\right)\left(−\frac{\mathrm{1}}{\boldsymbol{{p}}+\frac{\mathrm{1}}{\boldsymbol{{pk}}}}+\frac{\mathrm{1}}{\boldsymbol{{q}}+\frac{\mathrm{1}}{\boldsymbol{{qk}}}}+\frac{\mathrm{1}}{\boldsymbol{{r}}+\frac{\mathrm{1}}{\boldsymbol{{rk}}}}\right)\left(\frac{\mathrm{1}}{\boldsymbol{{p}}+\frac{\mathrm{1}}{\boldsymbol{{pk}}}}−\frac{\mathrm{1}}{\boldsymbol{{q}}+\frac{\mathrm{1}}{\boldsymbol{{qk}}}}+\frac{\mathrm{1}}{\boldsymbol{{r}}+\frac{\mathrm{1}}{\boldsymbol{{rk}}}}\right)\left(\frac{\mathrm{1}}{\boldsymbol{{p}}+\frac{\mathrm{1}}{\boldsymbol{{pk}}}}+\frac{\mathrm{1}}{\boldsymbol{{q}}+\frac{\mathrm{1}}{\boldsymbol{{qk}}}}−\frac{\mathrm{1}}{\boldsymbol{{r}}+\frac{\mathrm{1}}{\boldsymbol{{rk}}}}\right)}} \\ $$$$\boldsymbol{{a}}=\frac{\mathrm{2}\boldsymbol{\Delta}}{\boldsymbol{{p}}+\frac{\mathrm{1}}{\boldsymbol{{pk}}}} \\ $$$$\boldsymbol{{b}}=\frac{\mathrm{2}\boldsymbol{\Delta}}{\boldsymbol{{q}}+\frac{\mathrm{1}}{\boldsymbol{{qk}}}} \\ $$$$\boldsymbol{{c}}=\frac{\mathrm{2}\boldsymbol{\Delta}}{\boldsymbol{{r}}+\frac{\mathrm{1}}{\boldsymbol{{rk}}}} \\ $$$$ \\ $$$$\underline{{example}\:\mathrm{1}:\:{p}=\mathrm{7},\:{q}=\mathrm{6},\:{r}=\mathrm{5}} \\ $$$$\Rightarrow{a}\approx\mathrm{9}.\mathrm{79245055}\:{or}\:\mathrm{1}.\mathrm{56227610} \\ $$$$\Rightarrow{b}\approx\mathrm{10}.\mathrm{43513717}\:{or}\:\mathrm{3}.\mathrm{92946646} \\ $$$$\Rightarrow{c}\approx\mathrm{10}.\mathrm{94952454}\:{or}\:\mathrm{5}.\mathrm{14205276} \\ $$$$\left({see}\:{first}\:{diagram}\right) \\ $$$$\underline{{example}\:\mathrm{2}:\:{p}={q}={r}=\mathrm{2}} \\ $$$$\Rightarrow{a}={b}={c}\approx\mathrm{3}.\mathrm{46410162}\:\left(=\mathrm{2}\sqrt{\mathrm{3}}\right) \\ $$

Commented by Tawa11 last updated on 11/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 12/Dec/21

Commented by mr W last updated on 14/Dec/21

Commented by mr W last updated on 14/Dec/21

Commented by mr W last updated on 14/Dec/21

Commented by mr W last updated on 14/Dec/21

Answered by mr W last updated on 27/Dec/21

according to Q162071  we can also calculate the side lengthes  using following formulas:     determinant ((((1/k)=(2/(pqr))(√((p^2 +q^2 +r^2 )/3)) sin {(π/3)−(1/3) sin^(−1)  pqr((3/(p^2 +q^2 +r^2 )))^(3/2) })),(((1/k)=−(2/(pqr))(√((p^2 +q^2 +r^2 )/3)) sin {(π/3)+(1/3) sin^(−1)  pqr((3/(p^2 +q^2 +r^2 )))^(3/2) })))    a=(√(q^2 +r^2 −2k))  b=(√(r^2 +p^2 −2k))  c=(√(p^2 +q^2 −2k))

$${according}\:{to}\:{Q}\mathrm{162071} \\ $$$${we}\:{can}\:{also}\:{calculate}\:{the}\:{side}\:{lengthes} \\ $$$${using}\:{following}\:{formulas}: \\ $$$$ \\ $$$$\begin{array}{|c|c|}{\frac{\mathrm{1}}{{k}}=\frac{\mathrm{2}}{{pqr}}\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{3}}}\:\mathrm{sin}\:\left\{\frac{\pi}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \:{pqr}\left(\frac{\mathrm{3}}{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right\}}\\{\frac{\mathrm{1}}{{k}}=−\frac{\mathrm{2}}{{pqr}}\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{3}}}\:\mathrm{sin}\:\left\{\frac{\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \:{pqr}\left(\frac{\mathrm{3}}{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right\}}\\\hline\end{array} \\ $$$$ \\ $$$${a}=\sqrt{{q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{k}} \\ $$$${b}=\sqrt{{r}^{\mathrm{2}} +{p}^{\mathrm{2}} −\mathrm{2}{k}} \\ $$$${c}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{k}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com