Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 161212 by cortano last updated on 14/Dec/21

  ∫_( 0) ^( (π/2))  ((x sin x cos x)/(cos^4 x +sin^4 x)) dx =?

$$\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{x}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{\mathrm{cos}\:^{\mathrm{4}} {x}\:+\mathrm{sin}\:^{\mathrm{4}} {x}}\:{dx}\:=? \\ $$

Commented by puissant last updated on 15/Dec/21

Commented by Tawa11 last updated on 15/Dec/21

Nice sirs

$$\mathrm{Nice}\:\mathrm{sirs} \\ $$

Answered by chhaythean last updated on 14/Dec/21

let I=∫_0 ^(π/2) ((xsinxcosx)/(cos^4 x+sin^4 x))dx  (∗)  I=∫_0 ^(π/2) ((((π/2)−x)sin((π/2)−x)cos((π/2)−x))/(cos^4 ((π/2)−x)+sin^4 ((π/2)−x)))dx  I=∫_0 ^(π/2) ((((π/2)−x)sinxcosx)/(cos^4 x+sin^4 x))dx  (∗∗)  take (∗)+(∗∗) we get:  2I=(π/2)∫_0 ^(π/2) ((sinxcosx)/(cos^4 x+sin^4 x))dx  let sin^2 x=t⇒dt=2sinxcosxdx  2I=(π/4)∫_0 ^1 (dt/((1−t)^2 +t^2 ))  2I=(π/4)∫_0 ^1 (dt/(1−2t+2t^2 ))=(π/8)∫_0 ^1 (dt/(t^2 −t−(1/2)))  2I=(π/8)∫_0 ^1 (dt/((t−(1/2))^2 −(1/4)))  2I=(π/8)×2arctan(2t−1)∣_0 ^1   2I=(π/8)(2×2arctan(1))  2I=(π^2 /8)⇒I=(π^2 /(16))

$$\mathrm{let}\:\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}\mathrm{sin}{x}\mathrm{cos}{x}}{\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{4}} {x}}\mathrm{d}{x}\:\:\left(\ast\right) \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\frac{\pi}{\mathrm{2}}−{x}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}{\mathrm{cos}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{2}}−{x}\right)+\mathrm{sin}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{2}}−{x}\right)}\mathrm{d}{x} \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\frac{\pi}{\mathrm{2}}−{x}\right)\mathrm{sin}{x}\mathrm{cos}{x}}{\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{4}} {x}}\mathrm{d}{x}\:\:\left(\ast\ast\right) \\ $$$$\mathrm{take}\:\left(\ast\right)+\left(\ast\ast\right)\:\mathrm{we}\:\mathrm{get}: \\ $$$$\mathrm{2I}=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}{x}\mathrm{cos}{x}}{\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{4}} {x}}\mathrm{d}{x} \\ $$$$\mathrm{let}\:\mathrm{sin}^{\mathrm{2}} {x}=\mathrm{t}\Rightarrow\mathrm{dt}=\mathrm{2sin}{x}\mathrm{cos}{x}\mathrm{d}{x} \\ $$$$\mathrm{2I}=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dt}}{\left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} } \\ $$$$\mathrm{2I}=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dt}}{\mathrm{1}−\mathrm{2t}+\mathrm{2t}^{\mathrm{2}} }=\frac{\pi}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} −\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{2I}=\frac{\pi}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dt}}{\left(\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\mathrm{2I}=\frac{\pi}{\mathrm{8}}×\mathrm{2arctan}\left(\mathrm{2t}−\mathrm{1}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathrm{2I}=\frac{\pi}{\mathrm{8}}\left(\mathrm{2}×\mathrm{2arctan}\left(\mathrm{1}\right)\right) \\ $$$$\mathrm{2I}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\Rightarrow\mathrm{I}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$

Commented by cortano last updated on 14/Dec/21

yes. thanks

$${yes}.\:{thanks} \\ $$

Answered by Ar Brandon last updated on 14/Dec/21

I=∫_0 ^(π/2) ((xsinxcosx)/(cos^4 x+sin^4 x))dx=(π/4)∫_0 ^(π/2) ((sinxcosx)/(cos^4 x+sin^4 x))dx     =(π/4)∫_0 ^(π/2) ((tanx∙sec^2 x)/(1+tan^4 x))dx=(π/4)∫_0 ^∞ (t/(t^4 +1))dt     =(π/8)∫_0 ^∞ (du/(u^2 +1))=(π/8)[tan^(−1) (u)]_0 ^∞ =(π^2 /(16))

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}\mathrm{sin}{x}\mathrm{cos}{x}}{\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{4}} {x}}{dx}=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}{x}\mathrm{cos}{x}}{\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{4}} {x}}{dx} \\ $$$$\:\:\:=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{tan}{x}\centerdot\mathrm{sec}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{tan}^{\mathrm{4}} {x}}{dx}=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \frac{{t}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt} \\ $$$$\:\:\:=\frac{\pi}{\mathrm{8}}\int_{\mathrm{0}} ^{\infty} \frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\pi}{\mathrm{8}}\left[\mathrm{tan}^{−\mathrm{1}} \left({u}\right)\right]_{\mathrm{0}} ^{\infty} =\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$

Commented by Ar Brandon last updated on 14/Dec/21

     u=t^2 ,  t=tanx

$$\:\:\:\:\:{u}={t}^{\mathrm{2}} ,\:\:{t}=\mathrm{tan}{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com