Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 161257 by amin96 last updated on 15/Dec/21

Commented by amin96 last updated on 15/Dec/21

yes . solution?

$${yes}\:.\:{solution}? \\ $$

Answered by som(math1967) last updated on 15/Dec/21

let ∠ACE=∠ABO=θ  ∴∠FCL=90−θ  radius of semicircle=r   tanθ=(6/8)=(3/4)  from △AEC    AE=rtanθ  ∴ar △AEC (blue)=(1/2)×r×rtanθ  =((r^2 tanθ)/2)  from △CFD   FL=rsin(90−θ)=rcosθ  CL=rcos(90−θ)=rsinθ  ar △CFD(Yellow)=r^2 sinθcosθ   ∴((BLUE)/(YELLOW))=((r^2 tan𝛉)/(2r^2 sin𝛉cos𝛉))=((sec^2 𝛉)/2)  (1/2)×((25)/(16))=((25)/(32))

$${let}\:\angle{ACE}=\angle{ABO}=\theta \\ $$$$\therefore\angle{FCL}=\mathrm{90}−\theta \\ $$$${radius}\:{of}\:{semicircle}={r} \\ $$$$\:{tan}\theta=\frac{\mathrm{6}}{\mathrm{8}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${from}\:\bigtriangleup{AEC}\: \\ $$$$\:{AE}={rtan}\theta \\ $$$$\therefore{ar}\:\bigtriangleup{AEC}\:\left({blue}\right)=\frac{\mathrm{1}}{\mathrm{2}}×{r}×{rtan}\theta \\ $$$$=\frac{{r}^{\mathrm{2}} {tan}\theta}{\mathrm{2}} \\ $$$${from}\:\bigtriangleup{CFD} \\ $$$$\:{FL}={rsin}\left(\mathrm{90}−\theta\right)={rcos}\theta \\ $$$${CL}={rcos}\left(\mathrm{90}−\theta\right)={rsin}\theta \\ $$$${ar}\:\bigtriangleup{CFD}\left({Yellow}\right)={r}^{\mathrm{2}} {sin}\theta{cos}\theta \\ $$$$\:\therefore\frac{\boldsymbol{{BLUE}}}{\boldsymbol{{YELLOW}}}=\frac{\boldsymbol{{r}}^{\mathrm{2}} \boldsymbol{{tan}\theta}}{\mathrm{2}\boldsymbol{{r}}^{\mathrm{2}} \boldsymbol{{sin}\theta{cos}\theta}}=\frac{\boldsymbol{{sec}}^{\mathrm{2}} \boldsymbol{\theta}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{25}}{\mathrm{16}}=\frac{\mathrm{25}}{\mathrm{32}} \\ $$$$ \\ $$

Commented by som(math1967) last updated on 15/Dec/21

Commented by Tawa11 last updated on 15/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 15/Dec/21

Commented by Rasheed.Sindhi last updated on 15/Dec/21

Without Referencing Any Angle  •A & E are y & x intercepts  of y=−(3/4)x+6  A=(0,−(3/4)∙0+6)=(0,6)  OA=6  B=(x,0)=(8,0) [∵ 0=−(3/4)x+6⇒x=8]  OE=8  AE=(√(OA^2 +OE^2 ))=(√(6^2 +8^2 )) =10  •B=(r,r): y=−(3/4)x+6⇒r=−(3/4)r+6  ⇒r=((24)/7)  •▲AFB:     ⇒r=((24)/7)⇒BF=((24)/7)     AF=6−r=6−((24)/7)=((18)/7)   ▲AFB=(1/2)∙BF∙AF=(1/2)∙((24)/7)∙((18)/7)=((216)/(49))  •△AOE∼△GCB    ((AE)/(BG))=((OA)/(BC))⇒((10)/( ((24)/7) ))=(6/(BC))⇒BC=((((24)/7)∙6)/(10))    =((24)/7)∙6∙(1/(10))=((72)/(35))⇒BC=((72)/(35))    GC=(√(BG^2 −BC^2 )) =(√((((24)/7))^2 −(((72)/(35)))^2 ))      =((96)/(35))  • ▲BGC=(1/2)∙BC∙GC=(1/2)∙((72)/(35))∙((96)/(35))    ▲BGD=2∙▲BGC=((72∙96)/(35^2 ))  • ((Blue)/(Yellow))=((▲AFB)/(▲BGD))=(((216)/(49))/((72∙96)/(35^2 )))=((216)/(49))∙((35^2 )/(72∙96))         =((25)/(32))

$$\mathbb{W}\mathrm{ithout}\:\mathbb{R}\mathrm{eferencing}\:\mathbb{A}\mathrm{ny}\:\mathbb{A}\mathrm{ngle} \\ $$$$\bullet\mathrm{A}\:\&\:\mathrm{E}\:\mathrm{are}\:\mathrm{y}\:\&\:\mathrm{x}\:\mathrm{intercepts}\:\:\mathrm{of}\:\mathrm{y}=−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}+\mathrm{6} \\ $$$$\mathrm{A}=\left(\mathrm{0},−\frac{\mathrm{3}}{\mathrm{4}}\centerdot\mathrm{0}+\mathrm{6}\right)=\left(\mathrm{0},\mathrm{6}\right) \\ $$$$\mathrm{OA}=\mathrm{6} \\ $$$$\mathrm{B}=\left(\mathrm{x},\mathrm{0}\right)=\left(\mathrm{8},\mathrm{0}\right)\:\left[\because\:\mathrm{0}=−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}+\mathrm{6}\Rightarrow\mathrm{x}=\mathrm{8}\right] \\ $$$$\mathrm{OE}=\mathrm{8} \\ $$$$\mathrm{AE}=\sqrt{\mathrm{OA}^{\mathrm{2}} +\mathrm{OE}^{\mathrm{2}} }=\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} }\:=\mathrm{10} \\ $$$$\bullet\mathrm{B}=\left(\mathrm{r},\mathrm{r}\right):\:\mathrm{y}=−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}+\mathrm{6}\Rightarrow\mathrm{r}=−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{r}+\mathrm{6} \\ $$$$\Rightarrow\mathrm{r}=\frac{\mathrm{24}}{\mathrm{7}} \\ $$$$\bullet\blacktriangle\mathrm{AFB}: \\ $$$$\:\:\:\Rightarrow\mathrm{r}=\frac{\mathrm{24}}{\mathrm{7}}\Rightarrow\mathrm{BF}=\frac{\mathrm{24}}{\mathrm{7}} \\ $$$$\:\:\:\mathrm{AF}=\mathrm{6}−\mathrm{r}=\mathrm{6}−\frac{\mathrm{24}}{\mathrm{7}}=\frac{\mathrm{18}}{\mathrm{7}} \\ $$$$\:\blacktriangle\mathrm{AFB}=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\mathrm{BF}\centerdot\mathrm{AF}=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{24}}{\mathrm{7}}\centerdot\frac{\mathrm{18}}{\mathrm{7}}=\frac{\mathrm{216}}{\mathrm{49}} \\ $$$$\bullet\bigtriangleup\mathrm{AOE}\sim\bigtriangleup\mathrm{GCB} \\ $$$$\:\:\frac{\mathrm{AE}}{\mathrm{BG}}=\frac{\mathrm{OA}}{\mathrm{BC}}\Rightarrow\frac{\mathrm{10}}{\:\frac{\mathrm{24}}{\mathrm{7}}\:}=\frac{\mathrm{6}}{\mathrm{BC}}\Rightarrow\mathrm{BC}=\frac{\frac{\mathrm{24}}{\mathrm{7}}\centerdot\mathrm{6}}{\mathrm{10}} \\ $$$$\:\:=\frac{\mathrm{24}}{\mathrm{7}}\centerdot\mathrm{6}\centerdot\frac{\mathrm{1}}{\mathrm{10}}=\frac{\mathrm{72}}{\mathrm{35}}\Rightarrow\mathrm{BC}=\frac{\mathrm{72}}{\mathrm{35}} \\ $$$$\:\:\mathrm{GC}=\sqrt{\mathrm{BG}^{\mathrm{2}} −\mathrm{BC}^{\mathrm{2}} }\:=\sqrt{\left(\frac{\mathrm{24}}{\mathrm{7}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{72}}{\mathrm{35}}\right)^{\mathrm{2}} }\: \\ $$$$\:\:\:=\frac{\mathrm{96}}{\mathrm{35}} \\ $$$$\bullet\:\blacktriangle\mathrm{BGC}=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\mathrm{BC}\centerdot\mathrm{GC}=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{72}}{\mathrm{35}}\centerdot\frac{\mathrm{96}}{\mathrm{35}} \\ $$$$\:\:\blacktriangle\mathrm{BGD}=\mathrm{2}\centerdot\blacktriangle\mathrm{BGC}=\frac{\mathrm{72}\centerdot\mathrm{96}}{\mathrm{35}^{\mathrm{2}} } \\ $$$$\bullet\:\frac{{Blue}}{{Yellow}}=\frac{\blacktriangle\mathrm{AFB}}{\blacktriangle\mathrm{BGD}}=\frac{\frac{\mathrm{216}}{\mathrm{49}}}{\frac{\mathrm{72}\centerdot\mathrm{96}}{\mathrm{35}^{\mathrm{2}} }}=\frac{\mathrm{216}}{\mathrm{49}}\centerdot\frac{\mathrm{35}^{\mathrm{2}} }{\mathrm{72}\centerdot\mathrm{96}} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{25}}{\mathrm{32}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com