Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 161285 by cortano last updated on 15/Dec/21

(1) ∫ (dx/(1−2cos x))  (2) ∫ ((sin 2x)/(sin x−sin^2 2x)) dx  (3) ∫ (dx/(cos 2x−sin x))

(1)dx12cosx(2)sin2xsinxsin22xdx(3)dxcos2xsinx

Answered by bobhans last updated on 15/Dec/21

(1) ∫ (dx/(1−2cos x)) = ∫ (dx/(1−2(2cos^2 ((x/2))−1)))      = ∫ (dx/(3−4cos^2 ((x/2)))) ; [tan (x/2)=t → { ((cos (x/2)=(1/( (√(1+t^2 )))))),((dx=(2/(1+t^2 )) dt)) :}]     = ∫ (2/(1+t^2 )) ((1/(3−(4/(1+t^2 )))))dt    = ∫ (2/(3t^2 −1)) dt = ∫ (2/((t(√3)−1)(t(√3)+1))) dt    = ∫ ((1/(t(√3)−1)) −(1/(t(√3)+1)))dt    = (1/( (√3))) ln ∣t(√3)−1∣−(1/( (√3))) ln ∣t(√3)+1∣ + c    = (1/( (√3))) ln ∣(((√3) tan ((x/2))−1)/( (√3) tan ((x/2))+1))∣ + c

(1)dx12cosx=dx12(2cos2(x2)1)=dx34cos2(x2);[tanx2=t{cosx2=11+t2dx=21+t2dt]=21+t2(1341+t2)dt=23t21dt=2(t31)(t3+1)dt=(1t311t3+1)dt=13lnt3113lnt3+1+c=13ln3tan(x2)13tan(x2)+1+c

Answered by bobhans last updated on 17/Dec/21

 (Q) ∫ (dx/(cos 2x−sin x)) =?  (⇒  ) ∫ (dx/(1−2sin^2 x−sin x)) = ∫ (dx/(−2sin^2 x−sin x+1))   =−∫ (dx/(2sin^2 x+sin x−1)) = −∫ (dx/((2sin x−1)(sin x+1)))   = −(1/3)∫ ((2/(2sin x−1))−(1/(sin x+1)))dx    [ tan (x/2)=u → { ((sin x = ((2u)/(1+u^2 )))),((dx=(2/(1+u^2 )))) :} ]   I_1  =−(2/3) ∫ (2/(1+u^2 )) .(1/(((4u)/(1+u^2 ))−1)) du    I_1  = −(4/3)∫  (du/(4u−u^2 −1))= (4/3)∫ (du/((u−2)^2 −5))   [ let u−2 =(√5) sec t ]    I_1  = (4/3) ∫ (((√5) sec t tan t dt)/(5 tan^2 t))=(4/(3(√5)))∫csc t dt   I_1  = (4/(3(√5))) ln ∣ csc t−cot t ∣ + c_(1 )    I_2  = (1/3)∫ (dx/(sin x+1)) = (1/3)∫ (2/(1+u^2 )).(1/(((2u)/(1+u^2 ))+1)) du   I_2  = (2/3)∫ (du/((u+1)^2 )) = (2/3)∫ (u+1)^(−2)  du   I_2 = −(2/(3(u+1))) + c_2 =−(2/(3(tan ((x/2))+1))) + c_2      ∴ I = I_1 +I_2

(Q)dxcos2xsinx=?()dx12sin2xsinx=dx2sin2xsinx+1=dx2sin2x+sinx1=dx(2sinx1)(sinx+1)=13(22sinx11sinx+1)dx[tanx2=u{sinx=2u1+u2dx=21+u2]I1=2321+u2.14u1+u21duI1=43du4uu21=43du(u2)25[letu2=5sect]I1=435secttantdt5tan2t=435csctdtI1=435lncsctcott+c1I2=13dxsinx+1=1321+u2.12u1+u2+1duI2=23du(u+1)2=23(u+1)2duI2=23(u+1)+c2=23(tan(x2)+1)+c2I=I1+I2

Answered by Ar Brandon last updated on 15/Dec/21

I=∫(dx/(1−2cosx)) , t=tan(x/2)     =∫(2/(1−2((1−t^2 )/(1+t^2 ))))∙(dt/(1+t^2 ))=2∫(dt/(3t^2 −1))     =−(2/( (√3)))argth((√3)t)+C=−(1/( (√3)))ln∣((1+(√3)t)/(1−(√3)t))∣+C     =((√3)/3)ln∣((1−(√3)tan(x/2))/(1+(√3)tan(x/2)))∣+C

I=dx12cosx,t=tanx2=2121t21+t2dt1+t2=2dt3t21=23argth(3t)+C=13ln1+3t13t+C=33ln13tanx21+3tanx2+C

Answered by Ar Brandon last updated on 15/Dec/21

J=∫((sin2x)/(sinx−sin^2 2x))dx=∫((2sinxcosx)/(sinx−4sin^2 xcos^2 x))dx     =2∫((cosx)/(1−4sinx(1−sin^2 x)))dx=2∫((d(sinx))/(4sin^3 x−4sinx+1))

J=sin2xsinxsin22xdx=2sinxcosxsinx4sin2xcos2xdx=2cosx14sinx(1sin2x)dx=2d(sinx)4sin3x4sinx+1

Answered by Tyller last updated on 19/Dec/21

1)∫ (dx/(1−2cosx)).  fazento:cos(x)=((1−u^2 )/(1+u^2 )).  u=tg((x/2))⇒dx=((2du)/(u^2 +1))⇒  ∫((2du)/(3u^2 −1))=I.  ∴I=(2/( (√3)))ln∣((u+(√3))/( (√(u^2 −3))))∣=(2/( (√3)))ln∣((tg((x/2))+(√3))/( (√(tg^2 ((x/2))−3))))∣+c

1)dx12cosx.fazento:cos(x)=1u21+u2.u=tg(x2)dx=2duu2+12du3u21=I.I=23lnu+3u23∣=23lntg(x2)+3tg2(x2)3+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com