Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 16133 by Tinkutara last updated on 18/Jun/17

H_α  line of Balmer series is 6500 A^o . The  wave length of Hγ is  (1) 4815 A^o   (2) 4298 A^o   (3) 7800 A^o   (4) 3800 A^o

$$\mathrm{H}_{\alpha} \:\mathrm{line}\:\mathrm{of}\:\mathrm{Balmer}\:\mathrm{series}\:\mathrm{is}\:\mathrm{6500}\:\overset{\mathrm{o}} {\mathrm{A}}.\:\mathrm{The} \\ $$$$\mathrm{wave}\:\mathrm{length}\:\mathrm{of}\:\mathrm{H}\gamma\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{4815}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{4298}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{7800}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{3800}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$

Answered by ajfour last updated on 18/Jun/17

  (1/λ_α )=R((1/4)−(1/9))=((5R)/(36))    (1/λ_γ )=R((1/4)−(1/(25)))=((21R)/(100))     (λ_γ /λ_α )= (((5R/36))/((21R/100)))=((500)/(36×21))     λ_γ = ((500)/(36×21))×6500A^°  =4298.94A^°

$$\:\:\frac{\mathrm{1}}{\lambda_{\alpha} }={R}\left(\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{9}}\right)=\frac{\mathrm{5}{R}}{\mathrm{36}} \\ $$$$\:\:\frac{\mathrm{1}}{\lambda_{\gamma} }={R}\left(\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{25}}\right)=\frac{\mathrm{21}{R}}{\mathrm{100}} \\ $$$$\:\:\:\frac{\lambda_{\gamma} }{\lambda_{\alpha} }=\:\frac{\left(\mathrm{5}{R}/\mathrm{36}\right)}{\left(\mathrm{21}{R}/\mathrm{100}\right)}=\frac{\mathrm{500}}{\mathrm{36}×\mathrm{21}} \\ $$$$\:\:\:\lambda_{\gamma} =\:\frac{\mathrm{500}}{\mathrm{36}×\mathrm{21}}×\mathrm{6500}{A}^{°} \:=\mathrm{4298}.\mathrm{94}{A}^{°} \\ $$

Commented by Tinkutara last updated on 18/Jun/17

Sir, can you explain what are H_α  and  H_γ ?

$$\mathrm{Sir},\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{what}\:\mathrm{are}\:\mathrm{H}_{\alpha} \:\mathrm{and} \\ $$$$\mathrm{H}_{\gamma} ? \\ $$

Commented by ajfour last updated on 18/Jun/17

It is a Balmer series wavelength  when transition is from any  higher state n to  m=2 lower state.  H_α  corresponds to the emission  when n=3 and  m=2       for H_β  :       n=4 and  m=2              for  H_γ  :      n=5  and  m=2    (1/λ)=R((1/m^2 )−(1/n^2 ))  for Lyman series m=1  for Balmer series m=2  ......   their    H_α  wavelength is for         n=m+1  H_(β )  :      n=m+2   H_γ  :      n=m+3

$${It}\:{is}\:{a}\:{Balmer}\:{series}\:{wavelength} \\ $$$${when}\:{transition}\:{is}\:{from}\:{any} \\ $$$${higher}\:{state}\:\boldsymbol{{n}}\:{to}\:\:\boldsymbol{{m}}=\mathrm{2}\:{lower}\:{state}. \\ $$$${H}_{\alpha} \:{corresponds}\:{to}\:{the}\:{emission} \\ $$$${when}\:{n}=\mathrm{3}\:{and}\:\:{m}=\mathrm{2} \\ $$$$\:\:\:\:\:{for}\:{H}_{\beta} \::\:\:\:\:\:\:\:{n}=\mathrm{4}\:{and}\:\:{m}=\mathrm{2}\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:{for}\:\:{H}_{\gamma} \::\:\:\:\:\:\:{n}=\mathrm{5}\:\:{and}\:\:{m}=\mathrm{2} \\ $$$$\:\:\frac{\mathrm{1}}{\lambda}={R}\left(\frac{\mathrm{1}}{{m}^{\mathrm{2}} }−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right) \\ $$$${for}\:{Lyman}\:{series}\:{m}=\mathrm{1} \\ $$$${for}\:{Balmer}\:{series}\:{m}=\mathrm{2} \\ $$$$...... \\ $$$$\:{their}\:\:\:\:{H}_{\alpha} \:{wavelength}\:{is}\:{for}\: \\ $$$$\:\:\:\:\:\:{n}={m}+\mathrm{1} \\ $$$${H}_{\beta\:} \::\:\:\:\:\:\:{n}={m}+\mathrm{2} \\ $$$$\:{H}_{\gamma} \::\:\:\:\:\:\:{n}={m}+\mathrm{3} \\ $$

Commented by Tinkutara last updated on 18/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com