Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 161367 by amin96 last updated on 17/Dec/21

Commented by 1549442205PVT last updated on 17/Dec/21

I think that the condition of the probem isn′t  clear  the radius of the arc which limits small  circle isn′t given yet

$${I}\:{think}\:{that}\:{the}\:{condition}\:{of}\:{the}\:{probem}\:{isn}'{t}\:\:{clear} \\ $$$${the}\:{radius}\:{of}\:{the}\:{arc}\:{which}\:{limits}\:{small} \\ $$$${circle}\:{isn}'{t}\:{given}\:{yet} \\ $$

Answered by mr W last updated on 17/Dec/21

Commented by mr W last updated on 17/Dec/21

BC=R−r  BE=(√((R−r)^2 −r^2 ))=(√(R^2 −2Rr))  OB=R  OE=R+(√(R^2 −2Rr))  OC=(√(r^2 +(R+(√(R^2 −2Rr)))^2 ))=(√(2R^2 −2Rr+r^2 +2R(√(R^2 −2Rr))))  cos α=((OE)/(OC)), sin α=((EC)/(OC))  β=(π/3)−α  AC=R+r  AC^2 =OA^2 +OC^2 −2×OA×OC×cos ((π/3)−α)  AC^2 =OA^2 +OC^2 −OA×OC(cos α+(√3) sin α)  AC^2 =OA^2 +OC^2 −OA(OE+(√3) EC)  (R+r)^2 =R^2 +2R^2 −2Rr+r^2 +2R(√(R^2 −2Rr))−R(R+(√(R^2 −2Rr))+(√3)r)  (√(R^2 −2Rr))=(4+(√3))r−R  (4+(√3))^2 r=2(3+(√3))R  ⇒(r/R)=((2(3+(√3)))/((4+(√3))^2 ))=((2(33−5(√3)))/(169))≈0.288044

$${BC}={R}−{r} \\ $$$${BE}=\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }=\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}} \\ $$$${OB}={R} \\ $$$${OE}={R}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}} \\ $$$${OC}=\sqrt{{r}^{\mathrm{2}} +\left({R}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}}\right)^{\mathrm{2}} }=\sqrt{\mathrm{2}{R}^{\mathrm{2}} −\mathrm{2}{Rr}+{r}^{\mathrm{2}} +\mathrm{2}{R}\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}}} \\ $$$$\mathrm{cos}\:\alpha=\frac{{OE}}{{OC}},\:\mathrm{sin}\:\alpha=\frac{{EC}}{{OC}} \\ $$$$\beta=\frac{\pi}{\mathrm{3}}−\alpha \\ $$$${AC}={R}+{r} \\ $$$${AC}^{\mathrm{2}} ={OA}^{\mathrm{2}} +{OC}^{\mathrm{2}} −\mathrm{2}×{OA}×{OC}×\mathrm{cos}\:\left(\frac{\pi}{\mathrm{3}}−\alpha\right) \\ $$$${AC}^{\mathrm{2}} ={OA}^{\mathrm{2}} +{OC}^{\mathrm{2}} −{OA}×{OC}\left(\mathrm{cos}\:\alpha+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\alpha\right) \\ $$$${AC}^{\mathrm{2}} ={OA}^{\mathrm{2}} +{OC}^{\mathrm{2}} −{OA}\left({OE}+\sqrt{\mathrm{3}}\:{EC}\right) \\ $$$$\left({R}+{r}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} +\mathrm{2}{R}^{\mathrm{2}} −\mathrm{2}{Rr}+{r}^{\mathrm{2}} +\mathrm{2}{R}\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}}−{R}\left({R}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}}+\sqrt{\mathrm{3}}{r}\right) \\ $$$$\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}}=\left(\mathrm{4}+\sqrt{\mathrm{3}}\right){r}−{R} \\ $$$$\left(\mathrm{4}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} {r}=\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{3}}\right){R} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{3}}\right)}{\left(\mathrm{4}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\mathrm{2}\left(\mathrm{33}−\mathrm{5}\sqrt{\mathrm{3}}\right)}{\mathrm{169}}\approx\mathrm{0}.\mathrm{288044} \\ $$

Commented by Tawa11 last updated on 18/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com