Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 161409 by LEKOUMA last updated on 17/Dec/21

Calculate  lim_(x→0) ((1−cos (1−cos x))/x^4 )  lim_(x→0) ((1−cos xcos 2xcos 3x)/x^2 )

$${Calculate} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{{x}^{\mathrm{4}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} } \\ $$

Commented by cortano last updated on 17/Dec/21

 (2) lim_(x→0)  ((1−cos x cos 2x cos 3x)/x^2 )    = lim_(x→0)  ((1−cos x+cos x−cos x cos 2x cos 3x)/x^2 )    = lim_(x→0)  ((1−cos x)/x^2 ) + lim_(x→0)  ((cos x (1−cos 2x cos 3x))/x^2 )   = (1/2) + lim_(x→0)  ((1−cos 2x+cos 2x−cos 2x cos 3x)/x^2 )   = (1/2)+lim_(x→0)  ((1−cos 2x)/x^2 )+lim_(x→0)  ((cos 2x(1−cos 3x))/x^2 )   = (1/2)+2+lim_(x→0)  ((1−cos 3x)/x^2 )   = (5/2)+(9/2) = ((14)/2) = 7

$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} } \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}+\mathrm{cos}\:{x}−\mathrm{cos}\:{x}\:\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} } \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}}{{x}^{\mathrm{2}} }\:+\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}\:\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}+\mathrm{cos}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}{{x}^{\mathrm{2}} }+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{2}{x}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{2}}\:=\:\frac{\mathrm{14}}{\mathrm{2}}\:=\:\mathrm{7}\: \\ $$

Answered by qaz last updated on 17/Dec/21

lim_(x→0) ((1−cos xcos 2xcos 3x)/x^2 )  =−lim_(x→0) ((ln(cos xcos 2xcos 3x))/x^2 )  =−lim_(x→0) ((lncos x)/x^2 )−lim_(x→0) ((lncos 2x)/x^2 )−lim_(x→0) ((lncos 3x)/x^2 )  =lim_(x→0) ((1−cos x)/x^2 )+lim_(x→0) ((1−cos 2x)/x^2 )+lim_(x→0) ((1−cos 3x)/x^2 )  =(1/2)+(1/2)∙2^2 +(1/2)∙3^2   =7  −−−−−−−−−−−−  lim_(x→0) ((1−cos (1−cos x))/x^4 )  =lim_(x→0) (((1/2)(1−cos x)^2 )/x^4 )  =(1/2)lim_(x→0) ((((1/2)x^2 )^2 )/x^4 )  =(1/8)

$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{xcos}\:\mathrm{2xcos}\:\mathrm{3x}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=−\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left(\mathrm{cos}\:\mathrm{xcos}\:\mathrm{2xcos}\:\mathrm{3x}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=−\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{lncos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }−\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{lncos}\:\mathrm{2x}}{\mathrm{x}^{\mathrm{2}} }−\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{lncos}\:\mathrm{3x}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }+\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2x}}{\mathrm{x}^{\mathrm{2}} }+\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{3x}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\centerdot\mathrm{2}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\centerdot\mathrm{3}^{\mathrm{2}} \\ $$$$=\mathrm{7} \\ $$$$−−−−−−−−−−−− \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} } \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Commented by LEKOUMA last updated on 17/Dec/21

Good!  Many thank

$${Good}!\:\:{Many}\:{thank} \\ $$

Answered by cortano last updated on 17/Dec/21

(1) lim_(x→0)  ((1−cos (1−cos x))/x^4 )    = lim_(x→0)  ((2sin^2 (((1−cos x)/2)))/x^4 )    = lim_(x→0)  ((2sin^2 (((2sin^2 ((x/2)))/2)))/x^4 )    = 2×((4×(1/(16)))/4) = 2×(1/(16))=(1/8)

$$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{{x}^{\mathrm{4}} } \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{2}}\right)}{{x}^{\mathrm{4}} } \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}}\right)}{{x}^{\mathrm{4}} } \\ $$$$\:\:=\:\mathrm{2}×\frac{\mathrm{4}×\frac{\mathrm{1}}{\mathrm{16}}}{\mathrm{4}}\:=\:\mathrm{2}×\frac{\mathrm{1}}{\mathrm{16}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com