All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 161437 by cortano last updated on 17/Dec/21
limx→08x2−4x+110+7x2+3x+15−2x=?
Answered by bobhans last updated on 18/Dec/21
limx→08x2−4x+110−1+7x2+3x+15−1xL1=limx→0(8x−4)[8x2−4x+110−1](8x2−4x+1)−1L1=−4×limr→1r−1r10−1=−410;[r=8x2−4x+110]L2=limx→0(7x+3)[7x2+3x+15−1](7x2+3x+1)−1L2=3×limx→07x2+3x+15−1(7x2+3x+1)−1L2=3×limz→1z−1z5−1=35;[z=7x2+3x+15]∴L=L1+L2=−410+35=210=15
Answered by mathmax by abdo last updated on 18/Dec/21
f(x)=(1+8x2−4x)110+(1+7x2+3x)15−2x⇒f(x)∼1+110(8x2−4x)+1+15(7x2+3x)−2x⇒f(x)∼45x2−25x+75x2+35xx⇒f(x)∼115x2+15xx⇒f(x)∼115x+15⇒limx→0f(x)=15
Terms of Service
Privacy Policy
Contact: info@tinkutara.com