All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 161443 by smallEinstein last updated on 18/Dec/21
Answered by mathmax by abdo last updated on 18/Dec/21
I=∫01log2(1+x)1+x2dxletf(a)=∫01(1+x)a1+x2dxwehavef(a)=∫01ealog(1+x)1+x2dx⇒f′(a)=∫01log(1+x)(1+x)a1+x2dx⇒f(2)(a)=∫01log2(1+x)1+x2(1+x)adx⇒f(2)(0)=∫01log2(1+x)1+x2dxf(a)=∫01(x+1)a∑n=0∞(−1)nx2ndx=∑n=0∞(−1)n∫01x2n(x+1)adxbut∫01x2n(x+1)adx=∫01x2n∑p=0aCapxpdx=∑p=0aCap∫01x2n+pdx=∑p=0aCap2n+p+1⇒f(a)=∑n=0∞(−1)n∑p=0aCap2n+p+1restcalculusoff′(a)....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com