Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161484 by bobhans last updated on 18/Dec/21

   { (((1/a)+(1/b)=9)),((((1/( (a)^(1/3) ))+(1/( (b)^(1/3) )))(1+(1/( (a)^(1/3) )))(1+(1/( (b)^(1/3) )))=18)) :}     8a+4b=?

{1a+1b=9(1a3+1b3)(1+1a3)(1+1b3)=188a+4b=?

Answered by mr W last updated on 18/Dec/21

let A=(1/( (a)^(1/3) )), B=(1/( (b)^(1/3) ))  let p=A+B, q=AB    A^3 +B^3 =9  (A+B)[(A+B)^2 −3AB]=9  p^3 −3pq=9   ...(i)    (A+B)(1+A)(1+B)=18  (A+B)(A+B+1+AB)=18  p^2 +p+pq=18   ...(ii)    (i)+3×(ii):  p^3 +3p^2 +3p=63  (p+1)^3 =64  ⇒p+1=4  ⇒p=3=A+B  3^3 −3×3q=9  ⇒q=2=AB  A, B are roots of x^2 −3x+2=0  ⇒(A,B)=(x_1 ,x_2 )=(1,2)  a=(1/A^3 ), b=(1/B^3 )  ⇒(a,b)=(1,(1/8))  8a+4b=8×1+4×(1/8)=((17)/2) or  8a+4b=8×(1/8)+4×1=5

letA=1a3,B=1b3letp=A+B,q=ABA3+B3=9(A+B)[(A+B)23AB]=9p33pq=9...(i)(A+B)(1+A)(1+B)=18(A+B)(A+B+1+AB)=18p2+p+pq=18...(ii)(i)+3×(ii):p3+3p2+3p=63(p+1)3=64p+1=4p=3=A+B333×3q=9q=2=ABA,Barerootsofx23x+2=0(A,B)=(x1,x2)=(1,2)a=1A3,b=1B3(a,b)=(1,18)8a+4b=8×1+4×18=172or8a+4b=8×18+4×1=5

Answered by blackmamba last updated on 18/Dec/21

 (Q)  { (((1/a)+(1/b)=9)),((((1/( (a)^(1/3) ))+(1/( (b)^(1/3) )))(1+(1/( (a)^(1/3) )))(1+(1/( (b)^(1/3) )))= 18)) :}   ⇔ (1+(1/( (a)^(1/3) ))+(1/( (b)^(1/3) )))^3 =1+(1/a)+(1/b)+3((1/( (a)^(1/3) ))+(1/( (b)^(1/3) )))(1+(1/( (a)^(1/3) )))(1+(1/( (b)^(1/3) )))   ⇔ (1+(1/( (a)^(1/3) ))+(1/( (b)^(1/3) )))^3 = 1+9+3(18)=64   ⇔(1/( (a)^(1/3) ))+(1/( (b)^(1/3) )) = 3 ; (1/a)+(1/b)+3((1/( ((ab))^(1/3) )))((1/( (a)^(1/3) ))+(1/( (b)^(1/3) )))=27  ⇒9+3(3)((1/( ((ab))^(1/3) )))=27 ; ab = (1/8)  ⇒ { (((1/a)+(1/b)=((a+b)/(ab))= 9⇒a+b=(9/8))),((ab=(1/8))) :}  ⇒a((9/8)−a)=(1/8); 9a−8a^2 =1  ⇒8a^2 −9a+1=0  ⇒(8a−1)(a−1)=0 ⇒ { ((a=1 ∧ b=(1/8))),((a=(1/8) ∧ b=1)) :}   ⇒8a+4b =  { ((8+(1/2)=((17)/2) ; or)),((1+4 = 5 )) :}

(Q){1a+1b=9(1a3+1b3)(1+1a3)(1+1b3)=18(1+1a3+1b3)3=1+1a+1b+3(1a3+1b3)(1+1a3)(1+1b3)(1+1a3+1b3)3=1+9+3(18)=641a3+1b3=3;1a+1b+3(1ab3)(1a3+1b3)=279+3(3)(1ab3)=27;ab=18{1a+1b=a+bab=9a+b=98ab=18a(98a)=18;9a8a2=18a29a+1=0(8a1)(a1)=0{a=1b=18a=18b=18a+4b={8+12=172;or1+4=5

Commented by Tawa11 last updated on 18/Dec/21

Great sir.

Greatsir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com