All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 161484 by bobhans last updated on 18/Dec/21
{1a+1b=9(1a3+1b3)(1+1a3)(1+1b3)=188a+4b=?
Answered by mr W last updated on 18/Dec/21
letA=1a3,B=1b3letp=A+B,q=ABA3+B3=9(A+B)[(A+B)2−3AB]=9p3−3pq=9...(i)(A+B)(1+A)(1+B)=18(A+B)(A+B+1+AB)=18p2+p+pq=18...(ii)(i)+3×(ii):p3+3p2+3p=63(p+1)3=64⇒p+1=4⇒p=3=A+B33−3×3q=9⇒q=2=ABA,Barerootsofx2−3x+2=0⇒(A,B)=(x1,x2)=(1,2)a=1A3,b=1B3⇒(a,b)=(1,18)8a+4b=8×1+4×18=172or8a+4b=8×18+4×1=5
Answered by blackmamba last updated on 18/Dec/21
(Q){1a+1b=9(1a3+1b3)(1+1a3)(1+1b3)=18⇔(1+1a3+1b3)3=1+1a+1b+3(1a3+1b3)(1+1a3)(1+1b3)⇔(1+1a3+1b3)3=1+9+3(18)=64⇔1a3+1b3=3;1a+1b+3(1ab3)(1a3+1b3)=27⇒9+3(3)(1ab3)=27;ab=18⇒{1a+1b=a+bab=9⇒a+b=98ab=18⇒a(98−a)=18;9a−8a2=1⇒8a2−9a+1=0⇒(8a−1)(a−1)=0⇒{a=1∧b=18a=18∧b=1⇒8a+4b={8+12=172;or1+4=5
Commented by Tawa11 last updated on 18/Dec/21
Greatsir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com