Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 161504 by mathocean1 last updated on 18/Dec/21

Montrer a^�  partir du crite^� re de   Cauchy que U_n =Σ_(k=1) ^n (1/k^2 ) est une  de Cauchy.  −−−−−−−−−−−−−−−−  Show by using Cauchy′s sequence  definition that U_n =Σ_(k=1) ^n (1/k^2 ) is a   sequence of Cauchy.

$${Montrer}\:\grave {{a}}\:{partir}\:{du}\:{crit}\grave {{e}re}\:{de}\: \\ $$$${Cauchy}\:{que}\:{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:{est}\:{une} \\ $$$${de}\:{Cauchy}. \\ $$$$−−−−−−−−−−−−−−−− \\ $$$${Show}\:{by}\:{using}\:{Cauchy}'{s}\:{sequence} \\ $$$${definition}\:{that}\:{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:{is}\:{a}\: \\ $$$${sequence}\:{of}\:{Cauchy}. \\ $$

Answered by mindispower last updated on 20/Dec/21

⇔∀ε>0 ∃N ∀(n,m)≥N ∣U_n −U_m ∣<ε  soit ε>0  U_n −U_m =Σ_(k=m+1) ^n (1/k^2 )=S_(n,m)   f(x)=(1/x^2 )  (1/((k+1)^2 ))≤∫_k ^(k+1) (1/x^2 )dx≤(1/k^2 )  ⇒Σ_(k=m) ^(n−1) (1/((k+1)^2 ))<(1/k)−(1/(k+1))  S_(n,m) <(1/m)−(1/n)=((n−m)/(nm))  soit N∈N tell? Que (1/N)<ε ⇒N=[ε]+1  ⇒S_(n,m) =(1/m)−(1/n)<(1/N)<ε,∀(n,m)>N  ⇒U_n est de cauchy

$$\Leftrightarrow\forall\epsilon>\mathrm{0}\:\exists{N}\:\forall\left({n},{m}\right)\geqslant{N}\:\mid{U}_{{n}} −{U}_{{m}} \mid<\epsilon \\ $$$${soit}\:\epsilon>\mathrm{0} \\ $$$${U}_{{n}} −{U}_{{m}} =\underset{{k}={m}+\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }={S}_{{n},{m}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\leqslant\int_{{k}} ^{{k}+\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx}\leqslant\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{k}={m}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }<\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${S}_{{n},{m}} <\frac{\mathrm{1}}{{m}}−\frac{\mathrm{1}}{{n}}=\frac{{n}−{m}}{{nm}} \\ $$$${soit}\:{N}\in\mathbb{N}\:{tell}?\:{Que}\:\frac{\mathrm{1}}{{N}}<\epsilon\:\Rightarrow{N}=\left[\epsilon\right]+\mathrm{1} \\ $$$$\Rightarrow{S}_{{n},{m}} =\frac{\mathrm{1}}{{m}}−\frac{\mathrm{1}}{{n}}<\frac{\mathrm{1}}{{N}}<\epsilon,\forall\left({n},{m}\right)>{N} \\ $$$$\Rightarrow{U}_{{n}} {est}\:{de}\:{cauchy} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathocean1 last updated on 21/Dec/21

Thanks sir!

$${Thanks}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com