Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 161537 by cortano last updated on 19/Dec/21

 ∫_0 ^( (π/4))  ((1+tan^4 (x))/(cot^2 (x))) dx =?

0π41+tan4(x)cot2(x)dx=?

Answered by Ar Brandon last updated on 19/Dec/21

=∫_0 ^(π/4) (tan^2 x+tan^6 x)dx  =∫_0 ^(π/4) (sec^2 x−1)dx+∫_0 ^(π/4) (tan^4 x)(sec^2 x−1)dx  =[tanx−x]_0 ^(π/4) +[((tan^5 x)/5)]_0 ^(π/4) −∫_0 ^(π/4) (tan^2 x)(sec^2 x−1)dx  =1−(π/4)+(1/5)−[((tan^3 x)/3)]_0 ^(π/4) +∫_0 ^(π/4) (sec^2 x−1)dx  =(6/5)−(π/4)−(1/3)+[tanx−x]_0 ^(π/4) =((13)/(15))−(π/4)+(1−(π/4))  =((28)/(15))−(π/2)

=0π4(tan2x+tan6x)dx=0π4(sec2x1)dx+0π4(tan4x)(sec2x1)dx=[tanxx]0π4+[tan5x5]0π40π4(tan2x)(sec2x1)dx=1π4+15[tan3x3]0π4+0π4(sec2x1)dx=65π413+[tanxx]0π4=1315π4+(1π4)=2815π2

Commented by Ar Brandon last updated on 19/Dec/21

1+tan^2 x=sec^2 x  ((d(tanx))/dx)=sec^2 x

1+tan2x=sec2xd(tanx)dx=sec2x

Commented by peter frank last updated on 20/Dec/21

good

good

Answered by cortano last updated on 19/Dec/21

Commented by saboorhalimi last updated on 19/Dec/21

sir which software did you use   for writing this solution?

sirwhichsoftwaredidyouuseforwritingthissolution?

Commented by cortano last updated on 20/Dec/21

math editor for pc

matheditorforpc

Terms of Service

Privacy Policy

Contact: info@tinkutara.com