Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 1616 by 123456 last updated on 27/Aug/15

lets two sets A,B and take ∣X∣ the number  of elements of the set X, them  proof or give a counter example that  if ∣A∪B∣=∞ and ∣A∩B∣=∞ then ∣A∣=∞ and ∣B∣=∞

$$\mathrm{lets}\:\mathrm{two}\:\mathrm{sets}\:\mathrm{A},\mathrm{B}\:\mathrm{and}\:\mathrm{take}\:\mid\mathrm{X}\mid\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{elements}\:\mathrm{of}\:\mathrm{the}\:\mathrm{set}\:\mathrm{X},\:\mathrm{them} \\ $$$$\mathrm{proof}\:\mathrm{or}\:\mathrm{give}\:\mathrm{a}\:\mathrm{counter}\:\mathrm{example}\:\mathrm{that} \\ $$$$\mathrm{if}\:\mid\mathrm{A}\cup\mathrm{B}\mid=\infty\:\mathrm{and}\:\mid\mathrm{A}\cap\mathrm{B}\mid=\infty\:\mathrm{then}\:\mid\mathrm{A}\mid=\infty\:\mathrm{and}\:\mid\mathrm{B}\mid=\infty \\ $$

Commented by 112358 last updated on 27/Aug/15

A∪B=A+B−A∩B  ⇒∣A∪B∣=∣A∣+∣B∣−∣A∩B∣  ∴ ∣A∩B∣+∣A∪B∣=∣A∣+∣B∣  By logic, p→q≡∽q→∽p. So,  propose the following statements  p:∣A∩B∣ and ∣A∪B∣ are non−finite.  q: ∣A∣ and ∣B∣ are non−finite.  Then one may find it easier to   show that ∽q→∽p rather than  p→q directly.  Let ∣A∣ and ∣B∣ be finite.  ⇒      ∣A∣=n     ,    ∣B∣=m  where n,m∈Z^+  and n,m are finite.  ⇒∣A∪B∣+∣A∩B∣=m+n  ∵ n and m arefinite   ⇒m+n is finite  ⇒∣A∩B∣+∣A∪B∣ is finite  ∴ ∣A∩B∣=x,∣A∪B∣=y so that                      x+y=m+n  with x,y∈Z^+  and are finite. Thus,  ∣A∪B∣ and ∣A∩B∣ are finite.  ∵ ∽q→∽p then we have that  p→q. Hence, ∣A∩B∣=∞ and ∣A∪B∣=∞  implies that ∣A∣=∞ and ∣B∣=∞.

$${A}\cup{B}={A}+{B}−{A}\cap{B} \\ $$$$\Rightarrow\mid{A}\cup{B}\mid=\mid{A}\mid+\mid{B}\mid−\mid{A}\cap{B}\mid \\ $$$$\therefore\:\mid{A}\cap{B}\mid+\mid{A}\cup{B}\mid=\mid{A}\mid+\mid{B}\mid \\ $$$${By}\:{logic},\:{p}\rightarrow{q}\equiv\backsim{q}\rightarrow\backsim{p}.\:{So}, \\ $$$${propose}\:{the}\:{following}\:{statements} \\ $$$${p}:\mid{A}\cap{B}\mid\:{and}\:\mid{A}\cup{B}\mid\:{are}\:{non}−{finite}. \\ $$$${q}:\:\mid{A}\mid\:{and}\:\mid{B}\mid\:{are}\:{non}−{finite}. \\ $$$${Then}\:{one}\:{may}\:{find}\:{it}\:{easier}\:{to}\: \\ $$$${show}\:{that}\:\backsim{q}\rightarrow\backsim{p}\:{rather}\:{than} \\ $$$${p}\rightarrow{q}\:{directly}. \\ $$$${Let}\:\mid{A}\mid\:{and}\:\mid{B}\mid\:{be}\:{finite}. \\ $$$$\Rightarrow\:\:\:\:\:\:\mid{A}\mid={n}\:\:\:\:\:,\:\:\:\:\mid{B}\mid={m} \\ $$$${where}\:{n},{m}\in\mathbb{Z}^{+} \:{and}\:{n},{m}\:{are}\:{finite}. \\ $$$$\Rightarrow\mid{A}\cup{B}\mid+\mid{A}\cap{B}\mid={m}+{n} \\ $$$$\because\:{n}\:{and}\:{m}\:{arefinite}\: \\ $$$$\Rightarrow{m}+{n}\:{is}\:{finite} \\ $$$$\Rightarrow\mid{A}\cap{B}\mid+\mid{A}\cup{B}\mid\:{is}\:{finite} \\ $$$$\therefore\:\mid{A}\cap{B}\mid={x},\mid{A}\cup{B}\mid={y}\:{so}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+{y}={m}+{n} \\ $$$${with}\:{x},{y}\in\mathbb{Z}^{+} \:{and}\:{are}\:{finite}.\:{Thus}, \\ $$$$\mid{A}\cup{B}\mid\:{and}\:\mid{A}\cap{B}\mid\:{are}\:{finite}. \\ $$$$\because\:\backsim{q}\rightarrow\backsim{p}\:{then}\:{we}\:{have}\:{that} \\ $$$${p}\rightarrow{q}.\:{Hence},\:\mid{A}\cap{B}\mid=\infty\:{and}\:\mid{A}\cup{B}\mid=\infty \\ $$$${implies}\:{that}\:\mid{A}\mid=\infty\:{and}\:\mid{B}\mid=\infty. \\ $$

Commented by 123456 last updated on 28/Aug/15

nice :D  thanks

$$\mathrm{nice}\::\mathrm{D} \\ $$$$\mathrm{thanks} \\ $$

Commented by Rasheed Ahmad last updated on 28/Aug/15

Appreciations! Good approach!

$${Appreciations}!\:{Good}\:{approach}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com