Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 161617 by gbanda95 last updated on 20/Dec/21

Answered by mathmax by abdo last updated on 20/Dec/21

I_(n+2) =∫_0 ^(π/2) sin^(n+2) dx =∫_0 ^(π/2) (1−cos^2 x)sin^n x dx  =I_n −∫_0 ^(π/2) cosx(cosx sin^n x)dx     (u=cosx and v^′ =cosx sin^n x)  so∫_0 ^(π/2) cosx(cosx sin^n x)dx =[cosx(1/(n+1))sin^(n+1) x]_0 ^(π/2)   −∫_0 ^(π/2) (−sinx)((sin^(n+1) x)/(n+1))dx =(1/(n+1))∫_0 ^(π/2)  sin^(n+2) xdx  =(1/(n+1))I_(n+2)  ⇒I_(n+2) =I_n −(1/(n+1))I_(n+2) ⇒  (1+(1/(n+1)))I_(n+2) =I_n  ⇒((n+2)/(n+1))I_(n+2) =I_n  ⇒I_(n+2) =((n+1)/(n+2))I_n   I_0 =∫_0 ^(π/2) dx =(π/2)  I_1 =∫_0 ^(π/2) sinxdx=[−cosx]_0 ^(π/2) =1

In+2=0π2sinn+2dx=0π2(1cos2x)sinnxdx=In0π2cosx(cosxsinnx)dx(u=cosxandv=cosxsinnx)so0π2cosx(cosxsinnx)dx=[cosx1n+1sinn+1x]0π20π2(sinx)sinn+1xn+1dx=1n+10π2sinn+2xdx=1n+1In+2In+2=In1n+1In+2(1+1n+1)In+2=Inn+2n+1In+2=InIn+2=n+1n+2InI0=0π2dx=π2I1=0π2sinxdx=[cosx]0π2=1

Answered by mathmax by abdo last updated on 20/Dec/21

W=∫_0 ^((√2)−1) ((√(x^2 +x))/(x+1))dx ⇒W=∫_0 ^((√2)−1) ((√(x^2 +x+(1/4)−(1/4)))/(x+1))dx  =∫_0 ^((√2)−1) ((√((x+(1/2))^2 −(1/4)))/(x+1))dx  =_(x+(1/2)=((chu)/2)→u=argch(2x+1)=ln(2x+1 +(√((2x+1)^2 −1))))    ∫_0 ^(ln(2(√2)−1+(√((2(√2)−1)^2 −1)))) ((shu)/(2(((chu)/2)+1)))   (1/2)    shudu  =(1/2)∫_0 ^(ln(2(√2)−1+(√((2(√2)−1)^2 −1))))  ((sh^2 u)/(2+chu))du let find  ∫ ((sh^2 u)/(2+chu))du=∫ ((ch(2u)−1)/(2(2+chu)))du =∫((((e^(2u) +e^(−2u) )/2)−1)/(2(2+((e^u +e^(−u) )/2))))du  =(1/2)∫   ((e^(2u) +e^(−2u) −2)/(4+e^u  +e^(−u) ))du  =_(e^u =x)   (1/2)∫  ((x^2 +x^(−2) −2)/(4+x+x^(−1) ))(dx/x)  =(1/2)∫  ((x^2 +x^(−2) )/(x^2 +4x+1))dx =(1/2)∫ ((x^4 +1)/(x^2 (x^2 +4x+1)))dx  rest decomposition ....be continued...

W=021x2+xx+1dxW=021x2+x+1414x+1dx=021(x+12)214x+1dx=x+12=chu2u=argch(2x+1)=ln(2x+1+(2x+1)21)0ln(221+(221)21)shu2(chu2+1)12shudu=120ln(221+(221)21)sh2u2+chuduletfindsh2u2+chudu=ch(2u)12(2+chu)du=e2u+e2u212(2+eu+eu2)du=12e2u+e2u24+eu+eudu=eu=x12x2+x224+x+x1dxx=12x2+x2x2+4x+1dx=12x4+1x2(x2+4x+1)dxrestdecomposition....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com