All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 161617 by gbanda95 last updated on 20/Dec/21
Answered by mathmax by abdo last updated on 20/Dec/21
In+2=∫0π2sinn+2dx=∫0π2(1−cos2x)sinnxdx=In−∫0π2cosx(cosxsinnx)dx(u=cosxandv′=cosxsinnx)so∫0π2cosx(cosxsinnx)dx=[cosx1n+1sinn+1x]0π2−∫0π2(−sinx)sinn+1xn+1dx=1n+1∫0π2sinn+2xdx=1n+1In+2⇒In+2=In−1n+1In+2⇒(1+1n+1)In+2=In⇒n+2n+1In+2=In⇒In+2=n+1n+2InI0=∫0π2dx=π2I1=∫0π2sinxdx=[−cosx]0π2=1
W=∫02−1x2+xx+1dx⇒W=∫02−1x2+x+14−14x+1dx=∫02−1(x+12)2−14x+1dx=x+12=chu2→u=argch(2x+1)=ln(2x+1+(2x+1)2−1)∫0ln(22−1+(22−1)2−1)shu2(chu2+1)12shudu=12∫0ln(22−1+(22−1)2−1)sh2u2+chuduletfind∫sh2u2+chudu=∫ch(2u)−12(2+chu)du=∫e2u+e−2u2−12(2+eu+e−u2)du=12∫e2u+e−2u−24+eu+e−udu=eu=x12∫x2+x−2−24+x+x−1dxx=12∫x2+x−2x2+4x+1dx=12∫x4+1x2(x2+4x+1)dxrestdecomposition....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com