Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 161623 by amin96 last updated on 20/Dec/21

Σ_(n=1) ^∞ (((−1)^(n+1) )/(n(n+2)))=?

$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}+\mathrm{1}} }{\boldsymbol{{n}}\left(\boldsymbol{{n}}+\mathrm{2}\right)}=? \\ $$

Answered by TheSupreme last updated on 20/Dec/21

(A/n)+(B/(n+2))=(((−1)^(n+1) )/(n(n+2)))  An+2A+Bn=(−1)^(n+1)   A=−B=(((−1)^(n+1) )/2)  Σ_(n=1) ^∞ (((−1)^(n+1) )/2)(1/n)−(((−1)^(n+1) )/2)(1/(n+2))  s_n =(1/2)−(1/3)+(((−1)^n )/(n+2))  lim s_n =(1/2)−(1/3)=(1/6)

$$\frac{{A}}{{n}}+\frac{{B}}{{n}+\mathrm{2}}=\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}\left({n}+\mathrm{2}\right)} \\ $$$${An}+\mathrm{2}{A}+{Bn}=\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \\ $$$${A}=−{B}=\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}}\frac{\mathrm{1}}{{n}}−\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}}\frac{\mathrm{1}}{{n}+\mathrm{2}} \\ $$$${s}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{2}} \\ $$$${lim}\:{s}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by mr W last updated on 21/Dec/21

how did you come from  An+2A+Bn=(−1)^(n+1)   to   A=−B=(((−1)^(n+1) )/2) ?

$${how}\:{did}\:{you}\:{come}\:{from} \\ $$$${An}+\mathrm{2}{A}+{Bn}=\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \\ $$$${to}\: \\ $$$${A}=−{B}=\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}}\:? \\ $$

Answered by mathmax by abdo last updated on 20/Dec/21

S_n =Σ_(k=1) ^n  (((−1)^(k+1) )/(k(k+2))) ⇒S_n =(1/2)Σ_(k=1) ^n ((1/k)−(1/(k+2)))(−1)^(k+1)   =−(1/2)Σ_(k=1) ^n  (((−1)^k )/k) +(1/2)Σ_(k=1) ^(n ) (((−1)^k )/(k+2)) (→k+2=p)  =−(1/2)Σ_(k=1) ^n  (((−1)^k )/k)+(1/2)Σ_(p=3) ^(n+2) (((−1)^p )/p)  =−(1/2)Σ_(k=1) ^n  (((−1)^k )/k)+(1/2){Σ_(p=1) ^n  (((−1)^p )/p)−(−1+(1/2))+(((−1)^n )/(n+2))}  =(1/2){(1/2)+(((−1)^n )/(n+2))} ⇒lim_(n→+∞) S_n =(1/4)

$$\mathrm{S}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} }{\mathrm{k}\left(\mathrm{k}+\mathrm{2}\right)}\:\Rightarrow\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{2}}\right)\left(−\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}}\:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}\:} \frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}+\mathrm{2}}\:\left(\rightarrow\mathrm{k}+\mathrm{2}=\mathrm{p}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}}+\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{p}=\mathrm{3}} ^{\mathrm{n}+\mathrm{2}} \frac{\left(−\mathrm{1}\right)^{\mathrm{p}} }{\mathrm{p}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}}+\frac{\mathrm{1}}{\mathrm{2}}\left\{\sum_{\mathrm{p}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{p}} }{\mathrm{p}}−\left(−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}+\mathrm{2}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}+\mathrm{2}}\right\}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com