Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 161723 by LEKOUMA last updated on 21/Dec/21

Calculate  lim_(x→0) (((1+x.2^x )/(1+x.3^x )))^(1/x^2 )   lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x)   lim_(x→a) ((x^x −a^a )/(x−a))

$${Calculate} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}.\mathrm{2}^{{x}} }{\mathrm{1}+{x}.\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{2}{e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right]^{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{{x}} −{a}^{{a}} }{{x}−{a}} \\ $$

Answered by cortano last updated on 21/Dec/21

(1) lim_(x→0)  (((1+x.2^x )/(1+x.3^x )))^(1/x^2 ) = e^(lim_(x→0)  ((x(2^x −3^x ))/x^2 ))       = e^(lim_(x→0) (((2^x −3^x )/x))) =e^(ln 2−ln 3)  = (2/3)

$$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}+{x}.\mathrm{2}^{{x}} }{\mathrm{1}+{x}.\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} =\:{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\left(\mathrm{2}^{{x}} −\mathrm{3}^{{x}} \right)}{{x}^{\mathrm{2}} }} \\ $$$$\:\:\:\:=\:{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{2}^{{x}} −\mathrm{3}^{{x}} }{{x}}\right)} ={e}^{\mathrm{ln}\:\mathrm{2}−\mathrm{ln}\:\mathrm{3}} \:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Answered by cortano last updated on 21/Dec/21

(2) lim_(x→0) (2e^(x/(x+1)) −1)^((x^2 +1)/x) =e^(lim_(x→0) ((2(e^(x/(x+1)) −1)(x^2 +1))/x))     = e^(lim_(x→0) 2((1/((x+1)^2 )).e^(x/(x+1)) ))  = e^2

$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{2}{e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right)^{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} ={e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}\left({e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}}} \\ $$$$\:\:=\:{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}2}\left(\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }.{e}^{\frac{{x}}{{x}+\mathrm{1}}} \right)} \:=\:{e}^{\mathrm{2}} \\ $$

Commented by LEKOUMA last updated on 21/Dec/21

Many thanks

$${Many}\:{thanks} \\ $$

Answered by Ar Brandon last updated on 21/Dec/21

A=lim_(x→0) (((1+x∙2^x )/(1+x.3^x )))^(1/x^2 ) ⇒lnA=lim_(x→0) (1/x^2 )ln(((1+x.2^x )/(1+x.3^x )))  lnA=lim_(x→0) (1/x^2 )(x.2^x −x.3^x )=lim_(x→0) ((2^x −3^x )/x)=ln((2/3))  lnA=ln((2/3))⇒ determinant (((A=(2/3))))

$$\mathcal{A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}\centerdot\mathrm{2}^{{x}} }{\mathrm{1}+{x}.\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \Rightarrow\mathrm{ln}\mathcal{A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\mathrm{ln}\left(\frac{\mathrm{1}+{x}.\mathrm{2}^{{x}} }{\mathrm{1}+{x}.\mathrm{3}^{{x}} }\right) \\ $$$$\mathrm{ln}\mathcal{A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left({x}.\mathrm{2}^{{x}} −{x}.\mathrm{3}^{{x}} \right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}^{{x}} −\mathrm{3}^{{x}} }{{x}}=\mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$$\mathrm{ln}\mathcal{A}=\mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\Rightarrow\begin{array}{|c|}{\mathcal{A}=\frac{\mathrm{2}}{\mathrm{3}}}\\\hline\end{array} \\ $$

Answered by Ar Brandon last updated on 21/Dec/21

B=lim_(x→a) ((x^x −a^a )/(x−a))=lim_(x→a) x^x (1+lnx)=a^a (1+lna)

$$\mathcal{B}=\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{{x}} −{a}^{{a}} }{{x}−{a}}=\underset{{x}\rightarrow{a}} {\mathrm{lim}}{x}^{{x}} \left(\mathrm{1}+\mathrm{ln}{x}\right)={a}^{{a}} \left(\mathrm{1}+\mathrm{ln}{a}\right) \\ $$

Commented by LEKOUMA last updated on 21/Dec/21

Many thanks

$${Many}\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com