Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161733 by Tawa11 last updated on 21/Dec/21

Answered by FongXD last updated on 21/Dec/21

   let O be the point where the 2  intersect     let T∈(QR), where (PT)⊥(QR)  • in the right triangle PQT  we have: PQ^2 =PT^2 +TQ^2   ⇒ PT=(√((3+1)^2 −(3−1)^2 ))=2(√3)  • cos(∠OQR)=((TQ)/(PQ))=((3−1)/(3+1))=(1/2), ⇒ ∠OQR=(π/3)  • ∠QPT=(π/2)−(π/3)=(π/6), ⇒ ∠OPS=(π/2)+(π/6)=((2π)/3)  • Area of PQRS=(((PS+QR)PT)/2)=(((1+3)×2(√3))/2)=4(√3)   (1)  • Area of sector OQR=((∠OQR)/2)×R^2 =(π/6)×3^2 =((3π)/2)   (2)  • Area of sector OPS=((∠OPS)/2)×r^2 =(π/3)   (3)  ⇒ Area of the shaded region=(1)−(2)−(3)  =4(√3)−((3π)/2)−(π/3)=4(√3)−((11π)/6)

$$\:\:\:\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the}\:\mathrm{point}\:\mathrm{where}\:\mathrm{the}\:\mathrm{2} \:\mathrm{intersect} \\ $$$$\:\:\:\mathrm{let}\:\mathrm{T}\in\left(\mathrm{QR}\right),\:\mathrm{where}\:\left(\mathrm{PT}\right)\bot\left(\mathrm{QR}\right) \\ $$$$\bullet\:\mathrm{in}\:\mathrm{the}\:\mathrm{right}\:\mathrm{triangle}\:\mathrm{PQT} \\ $$$$\mathrm{we}\:\mathrm{have}:\:\mathrm{PQ}^{\mathrm{2}} =\mathrm{PT}^{\mathrm{2}} +\mathrm{TQ}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{PT}=\sqrt{\left(\mathrm{3}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{3}−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\bullet\:\mathrm{cos}\left(\angle\mathrm{OQR}\right)=\frac{\mathrm{TQ}}{\mathrm{PQ}}=\frac{\mathrm{3}−\mathrm{1}}{\mathrm{3}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}},\:\Rightarrow\:\angle\mathrm{OQR}=\frac{\pi}{\mathrm{3}} \\ $$$$\bullet\:\angle\mathrm{QPT}=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{3}}=\frac{\pi}{\mathrm{6}},\:\Rightarrow\:\angle\mathrm{OPS}=\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{6}}=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\bullet\:\mathrm{Area}\:\mathrm{of}\:\mathrm{PQRS}=\frac{\left(\mathrm{PS}+\mathrm{QR}\right)\mathrm{PT}}{\mathrm{2}}=\frac{\left(\mathrm{1}+\mathrm{3}\right)×\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{4}\sqrt{\mathrm{3}}\:\:\:\left(\mathrm{1}\right) \\ $$$$\bullet\:\mathrm{Area}\:\mathrm{of}\:\mathrm{sector}\:\mathrm{OQR}=\frac{\angle\mathrm{OQR}}{\mathrm{2}}×\mathrm{R}^{\mathrm{2}} =\frac{\pi}{\mathrm{6}}×\mathrm{3}^{\mathrm{2}} =\frac{\mathrm{3}\pi}{\mathrm{2}}\:\:\:\left(\mathrm{2}\right) \\ $$$$\bullet\:\mathrm{Area}\:\mathrm{of}\:\mathrm{sector}\:\mathrm{OPS}=\frac{\angle\mathrm{OPS}}{\mathrm{2}}×\mathrm{r}^{\mathrm{2}} =\frac{\pi}{\mathrm{3}}\:\:\:\left(\mathrm{3}\right) \\ $$$$\Rightarrow\:\mathrm{Area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{region}=\left(\mathrm{1}\right)−\left(\mathrm{2}\right)−\left(\mathrm{3}\right) \\ $$$$=\mathrm{4}\sqrt{\mathrm{3}}−\frac{\mathrm{3}\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{3}}=\mathrm{4}\sqrt{\mathrm{3}}−\frac{\mathrm{11}\pi}{\mathrm{6}} \\ $$

Commented by Tawa11 last updated on 21/Dec/21

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com