Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161745 by HongKing last updated on 21/Dec/21

Prove that:  3 (√e) = (1/3) Σ_(k=1) ^∞  [ Σ_(n=0) ^∞  (1/(n!)) ]k2^(-k)

Provethat:3e=13k=1[n=01n!]k2k

Commented by mr W last updated on 22/Dec/21

question seems false.

questionseemsfalse.

Answered by mr W last updated on 22/Dec/21

Σ_(k=1) ^∞ x^k =(x/(1−x)) for ∣x∣<1  Σ_(k=1) ^∞ kx^(k−1) =(1/(1−x))+(x/((1−x)^2 ))  Σ_(k=1) ^∞ kx^k =(x/(1−x))+(x^2 /((1−x)^2 ))  with x=(1/2)  ⇒Σ_(k=1) ^∞ k2^(−k) =((1/2)/(1−(1/2)))+((((1/2))^2 )/((1−(1/2))^2 ))=2  e^x =Σ_(n=0) ^∞ (x^n /(n!))  with x=1  ⇒Σ_(n=0) ^∞ (1/(n!))=e    (1/3) Σ_(k=1) ^∞  [ Σ_(n=0) ^∞  (1/(n!)) ]k2^(-k)   =(1/3) Σ_(k=1) ^∞  (e) k2^(-k)   =(e/3) Σ_(k=1) ^∞ k2^(-k)   =(e/3)×2  =((2e)/3)≠3(√e)

k=1xk=x1xforx∣<1k=1kxk1=11x+x(1x)2k=1kxk=x1x+x2(1x)2withx=12k=1k2k=12112+(12)2(112)2=2ex=n=0xnn!withx=1n=01n!=e13k=1[n=01n!]k2k=13k=1(e)k2k=e3k=1k2k=e3×2=2e33e

Commented by HongKing last updated on 22/Dec/21

SORRY my dear Sir , [ Σ_(n=0) ^k ...  no ∞ , k

SORRYmydearSir,[kn=0...no,k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com