All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 161755 by mkam last updated on 22/Dec/21
provethat∑∞n=0(−1)nn+1=ln2
Answered by FelipeLz last updated on 22/Dec/21
f(x)=ln(x+1)f′(x)=1x+1f″(x)=−1(x+1)2f‴(x)=2(x+1)3f⁗(x)=−6(x+1)4⋮f(k)(x)=(−1)k−1(k−1)!(x+1)kf(x)=∑∞k=0f(k)(a)k!(x−a)ka=0⇒{f(a)=0f(k)(a)=(−1)k−1(k−1)!∴f(x)=∑∞k=1(−1)k−1(k−1)!k!xk=∑∞k=1(−1)k−1xkkk=n+1⇒f(x)=∑∞n=0(−1)nxn+1n+1ln(2)=f(1)=∑∞n=0(−1)n(1)n+1n+1=∑∞n=0(−1)nn+1
Answered by Ar Brandon last updated on 22/Dec/21
S=∑∞n=0(−1)nn+1=∑∞n=0(−1)n∫01xndx=∑∞n=0∫01(−x)ndx=∫01∑∞n=0(−x)ndx=∫0111+xdx=[ln(1+x)]01=ln(2)−ln(1)⇒∑∞n=0(−1)nn+1=ln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com