All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 161770 by cortano last updated on 22/Dec/21
limx→0(1+2x2+2x)2021−(1+2x2−2x)2021x
Answered by Ar Brandon last updated on 22/Dec/21
an−bn=(a−b)∑n−1k=0an−1−kbkL=limx→0(1+2x2+2x)2021−(1+2x2−2x)2021x=limx→04x∑2020k=0(1+2x2+2x)2020−k(1+2x2−2x)kx=4limx→0∑2020k=0(1+2x2+2x)2020−k(1+2x2−2x)k=4∑2020k=0(1)=4(2021)=8084
Answered by qaz last updated on 22/Dec/21
limx→0(1+2x2+2x)2021−(1+2x2−2x)2021x=limx→0,ξ→12021ξ2020x(4x)=8084
Terms of Service
Privacy Policy
Contact: info@tinkutara.com