Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 161770 by cortano last updated on 22/Dec/21

  lim_(x→0)  ((((√(1+2x^2 ))+2x)^(2021) −((√(1+2x^2 ))−2x)^(2021) )/x)

limx0(1+2x2+2x)2021(1+2x22x)2021x

Answered by Ar Brandon last updated on 22/Dec/21

  a^n −b^n =(a−b)Σ_(k=0) ^(n−1) a^(n−1−k) b^k   L=lim_(x→0) ((((√(1+2x^2 ))+2x)^(2021) −((√(1+2x^2 ))−2x)^(2021) )/x)       =lim_(x→0) ((4xΣ_(k=0) ^(2020) ((√(1+2x^2 ))+2x)^(2020−k) ((√(1+2x^2 ))−2x)^k )/x)       =4lim_(x→0) Σ_(k=0) ^(2020) ((√(1+2x^2 ))+2x)^(2020−k) ((√(1+2x^2 ))−2x)^k         =4Σ_(k=0) ^(2020) (1)=4(2021)=8084

anbn=(ab)n1k=0an1kbkL=limx0(1+2x2+2x)2021(1+2x22x)2021x=limx04x2020k=0(1+2x2+2x)2020k(1+2x22x)kx=4limx02020k=0(1+2x2+2x)2020k(1+2x22x)k=42020k=0(1)=4(2021)=8084

Answered by qaz last updated on 22/Dec/21

lim_(x→0) ((((√(1+2x^2 ))+2x)^(2021) −((√(1+2x^2 ))−2x)^(2021) )/x)  =lim_(x→0,ξ→1) ((2021ξ^(2020) )/x)(4x)  =8084

limx0(1+2x2+2x)2021(1+2x22x)2021x=limx0,ξ12021ξ2020x(4x)=8084

Terms of Service

Privacy Policy

Contact: info@tinkutara.com