Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 161783 by ajfour last updated on 22/Dec/21

Commented by ajfour last updated on 22/Dec/21

Cylinder is free to purely roll, find  radius, if point mass ball is to be  received successfully.

$${Cylinder}\:{is}\:{free}\:{to}\:{purely}\:{roll},\:{find} \\ $$$${radius},\:{if}\:{point}\:{mass}\:{ball}\:{is}\:{to}\:{be} \\ $$$${received}\:{successfully}. \\ $$

Commented by ajfour last updated on 22/Dec/21

Left d job, shall hunt online..

Commented by mr W last updated on 22/Dec/21

welcome back sir!

$${welcome}\:{back}\:{sir}! \\ $$

Commented by ajfour last updated on 22/Dec/21

thank you sir, wont u try this question..

$${thank}\:{you}\:{sir},\:{wont}\:{u}\:{try}\:{this}\:{question}.. \\ $$

Commented by mr W last updated on 23/Dec/21

i′ll try how far i can go.

$${i}'{ll}\:{try}\:{how}\:{far}\:{i}\:{can}\:{go}. \\ $$

Answered by mr W last updated on 23/Dec/21

Commented by mr W last updated on 23/Dec/21

x_1 =s  ϕ=(s/R)  let ω=(dθ/dt)  x_2 =s−R sin θ  y_2 =R(1+cos θ)  V=(ds/dt)=ω(ds/dθ)  A=(dV/dt)=ω(dV/dθ)  N sin θ R=(((MR^2 )/2)+MR^2 )((A/R))  ⇒N=((3MA)/(2 sin θ))=((3M)/(2 sin θ))×((ωdV)/dθ)  N=0 ⇔ (dV/dθ)=0  v_x =(dx_2 /dt)=V−R cos θ ω  v_y =(dy_2 /dt)=−R sin θ ω  (m/2)(v_x ^2 +v_y ^2 )+(1/2)×((3MR^2 )/2)×((V/R))^2 =mgR(1−cos θ)  v_x ^2 +v_y ^2 +((3MV^2 )/(2m))=2gR(1−cos θ)  V^2 +R^2 ω^2 −2VRω cos θ+((3MV^2 )/(2m))=2gR(1−cos θ)  ω^2 −((2g(1−cos θ))/R)−2ω cos θ((V/R))+(((3M)/(2m))+1)((V/R))^2 =0  ⇒(V/R)=((ω cos θ+(√(ω^2 (cos^2  θ−μ)+((2μg(1−cos θ))/R))))/μ)   with μ=((3M)/(2m))+1  ((ωds)/(Rdθ))=((ω cos θ+(√(ω^2 (cos^2  θ−μ)+((2μg(1−cos θ))/R))))/μ)  (ds/dθ)=R×((cos θ+(√(cos^2  θ−μ+((2μg(1−cos θ))/(Rω^2 )))))/μ)  ⇒s=R∫_0 ^θ ((cos θ+(√(cos^2  θ−μ+((2μg(1−cos θ))/(Rω^2 )))))/μ)dθ  a_x =(dv_x /dt)=((ωd)/dθ)(V−R cos θ ω)=ω((dV/dθ)−Rcos θ (dω/dθ)+R sin θ ω)  a_y =(dv_y /dt)=((ωd)/dθ)(−R sin θ ω)=ω(−R sin θ (dω/dθ)−R cos θ ω)  ma_x =−N sin θ  mω((dV/dθ)−Rcos θ (dω/dθ)+R sin θ ω)=−((3M)/2)×((ωdV)/dθ)  ⇒μ(d/dθ)((V/R))−cos θ (dω/dθ)+sin θ ω=0  ma_y =N cos θ−mg  mω(−R sin θ (dω/dθ)−R cos θ ω)=((3M)/(2 sin θ))×((ωdV)/dθ) cos θ−mg  ⇒((3M)/(2m))×(d/dθ)((V/R))=(g/(ωR))−(sin θ (dω/dθ)+cos θ ω)tan θ  ((3M)/(2mμ))cos θ (dω/dθ)−((3M)/(2mμ))sin θ ω=(g/(ωR))−((sin^2  θ)/(cos θ)) (dω/dθ)−sin θ ω   determinant ((((((3M)/(3M+2m))+tan^2  θ)cos θ (dω/dθ)−(((2m)/(3M+2m)))sin θ ω−(g/(ωR))=0)))  solve this d.e. (hard to do!)for ω=f(θ)   under ω=0 at θ=0  .......  once we have ω=f(θ), we also get (V/R).  from (d/dθ)((V/R))=0 we get θ_1  at which the  small ball loses contact to cylinder.  we also get the v_x  and v_y  at this instant.  upon now the small ball has the  motion of projectile and we can find  the position where it hits the ground.

$${x}_{\mathrm{1}} ={s} \\ $$$$\varphi=\frac{{s}}{{R}} \\ $$$${let}\:\omega=\frac{{d}\theta}{{dt}} \\ $$$${x}_{\mathrm{2}} ={s}−{R}\:\mathrm{sin}\:\theta \\ $$$${y}_{\mathrm{2}} ={R}\left(\mathrm{1}+\mathrm{cos}\:\theta\right) \\ $$$${V}=\frac{{ds}}{{dt}}=\omega\frac{{ds}}{{d}\theta} \\ $$$${A}=\frac{{dV}}{{dt}}=\omega\frac{{dV}}{{d}\theta} \\ $$$${N}\:\mathrm{sin}\:\theta\:{R}=\left(\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}+{MR}^{\mathrm{2}} \right)\left(\frac{{A}}{{R}}\right) \\ $$$$\Rightarrow{N}=\frac{\mathrm{3}{MA}}{\mathrm{2}\:\mathrm{sin}\:\theta}=\frac{\mathrm{3}{M}}{\mathrm{2}\:\mathrm{sin}\:\theta}×\frac{\omega{dV}}{{d}\theta} \\ $$$${N}=\mathrm{0}\:\Leftrightarrow\:\frac{{dV}}{{d}\theta}=\mathrm{0} \\ $$$${v}_{{x}} =\frac{{dx}_{\mathrm{2}} }{{dt}}={V}−{R}\:\mathrm{cos}\:\theta\:\omega \\ $$$${v}_{{y}} =\frac{{dy}_{\mathrm{2}} }{{dt}}=−{R}\:\mathrm{sin}\:\theta\:\omega \\ $$$$\frac{{m}}{\mathrm{2}}\left({v}_{{x}} ^{\mathrm{2}} +{v}_{{y}} ^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}{MR}^{\mathrm{2}} }{\mathrm{2}}×\left(\frac{{V}}{{R}}\right)^{\mathrm{2}} ={mgR}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$${v}_{{x}} ^{\mathrm{2}} +{v}_{{y}} ^{\mathrm{2}} +\frac{\mathrm{3}{MV}^{\mathrm{2}} }{\mathrm{2}{m}}=\mathrm{2}{gR}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$${V}^{\mathrm{2}} +{R}^{\mathrm{2}} \omega^{\mathrm{2}} −\mathrm{2}{VR}\omega\:\mathrm{cos}\:\theta+\frac{\mathrm{3}{MV}^{\mathrm{2}} }{\mathrm{2}{m}}=\mathrm{2}{gR}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$\omega^{\mathrm{2}} −\frac{\mathrm{2}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{{R}}−\mathrm{2}\omega\:\mathrm{cos}\:\theta\left(\frac{{V}}{{R}}\right)+\left(\frac{\mathrm{3}{M}}{\mathrm{2}{m}}+\mathrm{1}\right)\left(\frac{{V}}{{R}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\frac{{V}}{{R}}=\frac{\omega\:\mathrm{cos}\:\theta+\sqrt{\omega^{\mathrm{2}} \left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mu\right)+\frac{\mathrm{2}\mu{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{{R}}}}{\mu}\: \\ $$$${with}\:\mu=\frac{\mathrm{3}{M}}{\mathrm{2}{m}}+\mathrm{1} \\ $$$$\frac{\omega{ds}}{{Rd}\theta}=\frac{\omega\:\mathrm{cos}\:\theta+\sqrt{\omega^{\mathrm{2}} \left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mu\right)+\frac{\mathrm{2}\mu{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{{R}}}}{\mu} \\ $$$$\frac{{ds}}{{d}\theta}={R}×\frac{\mathrm{cos}\:\theta+\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta−\mu+\frac{\mathrm{2}\mu{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{{R}\omega^{\mathrm{2}} }}}{\mu} \\ $$$$\Rightarrow{s}={R}\int_{\mathrm{0}} ^{\theta} \frac{\mathrm{cos}\:\theta+\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta−\mu+\frac{\mathrm{2}\mu{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{{R}\omega^{\mathrm{2}} }}}{\mu}{d}\theta \\ $$$${a}_{{x}} =\frac{{dv}_{{x}} }{{dt}}=\frac{\omega{d}}{{d}\theta}\left({V}−{R}\:\mathrm{cos}\:\theta\:\omega\right)=\omega\left(\frac{{dV}}{{d}\theta}−{R}\mathrm{cos}\:\theta\:\frac{{d}\omega}{{d}\theta}+{R}\:\mathrm{sin}\:\theta\:\omega\right) \\ $$$${a}_{{y}} =\frac{{dv}_{{y}} }{{dt}}=\frac{\omega{d}}{{d}\theta}\left(−{R}\:\mathrm{sin}\:\theta\:\omega\right)=\omega\left(−{R}\:\mathrm{sin}\:\theta\:\frac{{d}\omega}{{d}\theta}−{R}\:\mathrm{cos}\:\theta\:\omega\right) \\ $$$${ma}_{{x}} =−{N}\:\mathrm{sin}\:\theta \\ $$$${m}\omega\left(\frac{{dV}}{{d}\theta}−{R}\mathrm{cos}\:\theta\:\frac{{d}\omega}{{d}\theta}+{R}\:\mathrm{sin}\:\theta\:\omega\right)=−\frac{\mathrm{3}{M}}{\mathrm{2}}×\frac{\omega{dV}}{{d}\theta} \\ $$$$\Rightarrow\mu\frac{{d}}{{d}\theta}\left(\frac{{V}}{{R}}\right)−\mathrm{cos}\:\theta\:\frac{{d}\omega}{{d}\theta}+\mathrm{sin}\:\theta\:\omega=\mathrm{0} \\ $$$${ma}_{{y}} ={N}\:\mathrm{cos}\:\theta−{mg} \\ $$$${m}\omega\left(−{R}\:\mathrm{sin}\:\theta\:\frac{{d}\omega}{{d}\theta}−{R}\:\mathrm{cos}\:\theta\:\omega\right)=\frac{\mathrm{3}{M}}{\mathrm{2}\:\mathrm{sin}\:\theta}×\frac{\omega{dV}}{{d}\theta}\:\mathrm{cos}\:\theta−{mg} \\ $$$$\Rightarrow\frac{\mathrm{3}{M}}{\mathrm{2}{m}}×\frac{{d}}{{d}\theta}\left(\frac{{V}}{{R}}\right)=\frac{{g}}{\omega{R}}−\left(\mathrm{sin}\:\theta\:\frac{{d}\omega}{{d}\theta}+\mathrm{cos}\:\theta\:\omega\right)\mathrm{tan}\:\theta \\ $$$$\frac{\mathrm{3}{M}}{\mathrm{2}{m}\mu}\mathrm{cos}\:\theta\:\frac{{d}\omega}{{d}\theta}−\frac{\mathrm{3}{M}}{\mathrm{2}{m}\mu}\mathrm{sin}\:\theta\:\omega=\frac{{g}}{\omega{R}}−\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{cos}\:\theta}\:\frac{{d}\omega}{{d}\theta}−\mathrm{sin}\:\theta\:\omega \\ $$$$\begin{array}{|c|}{\left(\frac{\mathrm{3}{M}}{\mathrm{3}{M}+\mathrm{2}{m}}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\mathrm{cos}\:\theta\:\frac{{d}\omega}{{d}\theta}−\left(\frac{\mathrm{2}{m}}{\mathrm{3}{M}+\mathrm{2}{m}}\right)\mathrm{sin}\:\theta\:\omega−\frac{{g}}{\omega{R}}=\mathrm{0}}\\\hline\end{array} \\ $$$${solve}\:{this}\:{d}.{e}.\:\left({hard}\:{to}\:{do}!\right){for}\:\omega={f}\left(\theta\right)\: \\ $$$${under}\:\omega=\mathrm{0}\:{at}\:\theta=\mathrm{0} \\ $$$$....... \\ $$$${once}\:{we}\:{have}\:\omega={f}\left(\theta\right),\:{we}\:{also}\:{get}\:\frac{{V}}{{R}}. \\ $$$${from}\:\frac{{d}}{{d}\theta}\left(\frac{{V}}{{R}}\right)=\mathrm{0}\:{we}\:{get}\:\theta_{\mathrm{1}} \:{at}\:{which}\:{the} \\ $$$${small}\:{ball}\:{loses}\:{contact}\:{to}\:{cylinder}. \\ $$$${we}\:{also}\:{get}\:{the}\:{v}_{{x}} \:{and}\:{v}_{{y}} \:{at}\:{this}\:{instant}. \\ $$$${upon}\:{now}\:{the}\:{small}\:{ball}\:{has}\:{the} \\ $$$${motion}\:{of}\:{projectile}\:{and}\:{we}\:{can}\:{find} \\ $$$${the}\:{position}\:{where}\:{it}\:{hits}\:{the}\:{ground}. \\ $$

Commented by mr W last updated on 23/Dec/21

that′s the point i can maximally come  to.

$${that}'{s}\:{the}\:{point}\:{i}\:{can}\:{maximally}\:{come} \\ $$$${to}. \\ $$

Commented by Tawa11 last updated on 23/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by ajfour last updated on 23/Dec/21

mg(2R)=(1/2)(((mR^2 )/2))ω^2 +(1/2)m(v_x ^2 +v_y ^2 )                          +mgR(1+cos θ)   ...(i)           (energy conservation)  mv_x =mωR    (linear momentum                 ..(ii)                  conservation)  mx=ms   ..(iii)    (center of mass )  2s=Rcos θ  ..)iv)  mv_x R(1+cos θ)+mv_y x             =((mR^2 )/2)ω+mR^2 ω   ...(v)  (angular momentum conservation)  now   v_y t+(1/2)gt^2 =R(1+cos θ) ..(vi)              v_x t=(b−x)   ..(vii)     ................................................  so   v_x =ωR  (b−((Rcos θ)/2))((v_y /(ωR)))+(1/2)(g/(ω^2 R^2 ))(b−((Rcos θ)/2))^2     =R(1+cos θ)  say  (b/R)=λ   ;  (v_y /(ωR))=μ  4(2λ−cos θ)μ+(g/(ω^2 R))(2λ−cos θ)^2 μ^2                =8(1+cos θ)     .....(A)    λ =?   (so we need   μ and cos θ)  and from ..(v)  2(1+cos θ)+μcos θ=3  ⇒  cos θ=(1/(2+μ))  And from ..(i)  ((8g)/R)=ω^2 +2ω^2 (1+μ^2 )+((4g)/R)(1+cos θ)  ⇒  ω^2 =((4g)/R)(((1−cos θ)/(3+2μ^2 )))   ...(I)  ⇒    ω^2 R=4g(((1−(1/(2+μ)))/(3+2μ^2 )))  also     (2ωRcos θ)^2 +(μωRsin θ)^2                 =gRcos θ  ⇒ ω^2 = (g/R)(((cos θ)/(4cos^2 θ+μ^2 sin^2 θ)))  ..(II)  from  ...(I) & (II)  4(1−cos θ)(4cos^2 θ+μ^2 sin^2 θ)       =cos θ(3+2μ^2 )  but  cos θ=(1/(2+μ))  hence we obtain 𝛍 from  4(1−(1/(2+μ))){((2/(2+μ)))^2 +(μ^2 /(1−(1/((2+μ)^2 ))))}        =(((3+2μ^2 )/(2+μ)))  and now  eq..(A)    gives us λ=(b/R)

$${mg}\left(\mathrm{2}{R}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{mR}^{\mathrm{2}} }{\mathrm{2}}\right)\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}\left({v}_{{x}} ^{\mathrm{2}} +{v}_{{y}} ^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{mgR}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\:\:\:...\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\left({energy}\:{conservation}\right) \\ $$$${mv}_{{x}} ={m}\omega{R}\:\:\:\:\left({linear}\:{momentum}\:\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:..\left({ii}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{conservation}\right) \\ $$$${mx}={ms}\:\:\:..\left({iii}\right)\:\:\:\:\left({center}\:{of}\:{mass}\:\right) \\ $$$$\left.\mathrm{2}\left.{s}={R}\mathrm{cos}\:\theta\:\:..\right){iv}\right) \\ $$$${mv}_{{x}} {R}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)+{mv}_{{y}} {x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{{mR}^{\mathrm{2}} }{\mathrm{2}}\omega+{mR}^{\mathrm{2}} \omega\:\:\:...\left({v}\right) \\ $$$$\left({angular}\:{momentum}\:{conservation}\right) \\ $$$${now}\:\:\:{v}_{{y}} {t}+\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} ={R}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\:..\left({vi}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{v}_{{x}} {t}=\left({b}−{x}\right)\:\:\:..\left({vii}\right) \\ $$$$\:\:\:................................................ \\ $$$${so}\:\:\:{v}_{{x}} =\omega{R} \\ $$$$\left({b}−\frac{{R}\mathrm{cos}\:\theta}{\mathrm{2}}\right)\left(\frac{{v}_{{y}} }{\omega{R}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\frac{{g}}{\omega^{\mathrm{2}} {R}^{\mathrm{2}} }\left({b}−\frac{{R}\mathrm{cos}\:\theta}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\:\:={R}\left(\mathrm{1}+\mathrm{cos}\:\theta\right) \\ $$$${say}\:\:\frac{{b}}{{R}}=\lambda\:\:\:;\:\:\frac{{v}_{{y}} }{\omega{R}}=\mu \\ $$$$\mathrm{4}\left(\mathrm{2}\lambda−\mathrm{cos}\:\theta\right)\mu+\frac{{g}}{\omega^{\mathrm{2}} {R}}\left(\mathrm{2}\lambda−\mathrm{cos}\:\theta\right)^{\mathrm{2}} \mu^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{8}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\:\:\:\:\:.....\left({A}\right) \\ $$$$\:\:\lambda\:=?\:\:\:\left({so}\:{we}\:{need}\:\:\:\mu\:{and}\:\mathrm{cos}\:\theta\right) \\ $$$${and}\:{from}\:..\left({v}\right) \\ $$$$\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)+\mu\mathrm{cos}\:\theta=\mathrm{3} \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{2}+\mu} \\ $$$${And}\:{from}\:..\left({i}\right) \\ $$$$\frac{\mathrm{8}{g}}{{R}}=\omega^{\mathrm{2}} +\mathrm{2}\omega^{\mathrm{2}} \left(\mathrm{1}+\mu^{\mathrm{2}} \right)+\frac{\mathrm{4}{g}}{{R}}\left(\mathrm{1}+\mathrm{cos}\:\theta\right) \\ $$$$\Rightarrow\:\:\omega^{\mathrm{2}} =\frac{\mathrm{4}{g}}{{R}}\left(\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{3}+\mathrm{2}\mu^{\mathrm{2}} }\right)\:\:\:...\left({I}\right) \\ $$$$\Rightarrow\:\: \\ $$$$\omega^{\mathrm{2}} {R}=\mathrm{4}{g}\left(\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}+\mu}}{\mathrm{3}+\mathrm{2}\mu^{\mathrm{2}} }\right) \\ $$$${also}\:\:\:\:\:\left(\mathrm{2}\omega{R}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\left(\mu\omega{R}\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:={gR}\mathrm{cos}\:\theta \\ $$$$\Rightarrow\:\omega^{\mathrm{2}} =\:\frac{{g}}{{R}}\left(\frac{\mathrm{cos}\:\theta}{\mathrm{4cos}\:^{\mathrm{2}} \theta+\mu^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}\right)\:\:..\left({II}\right) \\ $$$${from}\:\:...\left({I}\right)\:\&\:\left({II}\right) \\ $$$$\mathrm{4}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\left(\mathrm{4cos}\:^{\mathrm{2}} \theta+\mu^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\:\:\:=\mathrm{cos}\:\theta\left(\mathrm{3}+\mathrm{2}\mu^{\mathrm{2}} \right) \\ $$$${but}\:\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{2}+\mu} \\ $$$${hence}\:{we}\:{obtain}\:\boldsymbol{\mu}\:{from} \\ $$$$\mathrm{4}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}+\mu}\right)\left\{\left(\frac{\mathrm{2}}{\mathrm{2}+\mu}\right)^{\mathrm{2}} +\frac{\mu^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{2}+\mu\right)^{\mathrm{2}} }}\right\} \\ $$$$\:\:\:\:\:\:=\left(\frac{\mathrm{3}+\mathrm{2}\mu^{\mathrm{2}} }{\mathrm{2}+\mu}\right) \\ $$$${and}\:{now}\:\:{eq}..\left({A}\right)\:\:\:\:{gives}\:{us}\:\lambda=\frac{{b}}{{R}} \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 23/Dec/21

great!  i need some time to follow it.  i think with ω you don′t mean  ω=(dθ/dt), right?

$${great}! \\ $$$${i}\:{need}\:{some}\:{time}\:{to}\:{follow}\:{it}. \\ $$$${i}\:{think}\:{with}\:\omega\:{you}\:{don}'{t}\:{mean} \\ $$$$\omega=\frac{{d}\theta}{{dt}},\:{right}? \\ $$

Commented by ajfour last updated on 23/Dec/21

yeah its not (dθ/dt) , its the angular  velocity of rotation of the cylinder.

$${yeah}\:{its}\:{not}\:\frac{{d}\theta}{{dt}}\:,\:{its}\:{the}\:{angular} \\ $$$${velocity}\:{of}\:{rotation}\:{of}\:{the}\:{cylinder}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com