All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 161839 by mathmax by abdo last updated on 23/Dec/21
calculate∫−∞+∞dx(x2+2x+2)2
Answered by ArielVyny last updated on 23/Dec/21
I=∫−∞+∞dx(x2+2x+2)2=∫−∞+∞dx[(x+1)2+1]2letusconsideru=x+1∫−∞+∞du(u2+1)2=2∫0∞1(u2+1)2duu2=t→2udu=dt→du=dt2tI=∫0∞t−12(1+t)2dtknowingthat∫0∞xm−1(1+x)m+n=β(m,n)m−1=−12→m=12m+n=2→n=2−12=32I=∫0∞t−12(1+t)2dt=β(12,32)=Γ(32)Γ(12)I=12π
Answered by Ar Brandon last updated on 23/Dec/21
I=∫dx(x2+2x+2)2,Ostrogradskygives;=ax+bx2+2x+2+∫cx2+2x+2dx=x+12(x2+2x+2)+12∫dxx2+2x+2=x+12(x2+2x+2)+12∫dx(x+1)2+1=x+12(x2+2x+2)+arctan(x+1)2+C⇒∫−∞+∞dx(x2+2x+2)2=π2
Answered by Ar Brandon last updated on 24/Mar/22
I=∫−∞+∞dx(x2+2x+2)2,φ(z)=1(z2+2z+2)2Poles:z1=−1+i=2e3π4i,z2=2e−π4iI=∫−∞+∞φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limz→z1ddz{(z−z1)2φ(z)}=limz→z1ddz{1(z−z2)2}=limz→z1{−2(z−z2)3}=−2(z1−z2)3=−2(2i)3=14i⇒∫−∞+∞dx(x2+2x+2)2=2πi(14i)=π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com