Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 161839 by mathmax by abdo last updated on 23/Dec/21

calculate ∫_(−∞) ^(+∞)  (dx/((x^2 +2x+2)^2 ))

calculate+dx(x2+2x+2)2

Answered by ArielVyny last updated on 23/Dec/21

I=∫_(−∞) ^(+∞) (dx/((x^2 +2x+2)^2 ))=∫_(−∞) ^(+∞) (dx/([(x+1)^2 +1]^2 ))  let us consider  u=x+1  ∫_(−∞) ^(+∞) (du/((u^2 +1)^2 ))=2∫_0 ^∞ (1/((u^2 +1)^2 ))du  u^2 =t→2udu=dt→du=(dt/(2(√t)))  I=∫_0 ^∞ (t^(−(1/2)) /((1+t)^2 ))dt  knowing that ∫_0 ^∞ (x^(m−1) /((1+x)^(m+n) ))=β(m,n)  m−1=−(1/2)→m=(1/2)  m+n=2→n=2−(1/2)=(3/2)  I=∫_0 ^∞ (t^(−(1/2)) /((1+t)^2 ))dt=β((1/2),(3/2))=Γ((3/2))Γ((1/2))   I=(1/2)π

I=+dx(x2+2x+2)2=+dx[(x+1)2+1]2letusconsideru=x+1+du(u2+1)2=201(u2+1)2duu2=t2udu=dtdu=dt2tI=0t12(1+t)2dtknowingthat0xm1(1+x)m+n=β(m,n)m1=12m=12m+n=2n=212=32I=0t12(1+t)2dt=β(12,32)=Γ(32)Γ(12)I=12π

Answered by Ar Brandon last updated on 23/Dec/21

I=∫(dx/((x^2 +2x+2)^2 )), Ostrogradsky gives;     =((ax+b)/(x^2 +2x+2))+∫(c/(x^2 +2x+2))dx     =((x+1)/(2(x^2 +2x+2)))+(1/2)∫(dx/(x^2 +2x+2))     =((x+1)/(2(x^2 +2x+2)))+(1/2)∫(dx/((x+1)^2 +1))     =((x+1)/(2(x^2 +2x+2)))+((arctan(x+1))/2)+C     ⇒∫_(−∞) ^(+∞) (dx/((x^2 +2x+2)^2 ))=(π/2)

I=dx(x2+2x+2)2,Ostrogradskygives;=ax+bx2+2x+2+cx2+2x+2dx=x+12(x2+2x+2)+12dxx2+2x+2=x+12(x2+2x+2)+12dx(x+1)2+1=x+12(x2+2x+2)+arctan(x+1)2+C+dx(x2+2x+2)2=π2

Answered by Ar Brandon last updated on 24/Mar/22

I=∫_(−∞) ^(+∞) (dx/((x^2 +2x+2)^2 ))  , ϕ(z)=(1/((z^2 +2z+2)^2 ))   Poles: z_1 =−1+i=(√2)e^(((3π)/4)i) , z_2 =(√2)e^(−(π/4)i)   I=∫_(−∞) ^(+∞) ϕ(z)dz=2iπRes(ϕ, z_1 )  Res (ϕ, z_1 )=lim_(z→z_1 ) (d/dz){(z−z_1 )^2 ϕ(z)}=lim_(z→z_1 ) (d/dz){(1/((z−z_2 )^2 ))}  =lim_(z→z_1 ) {−(2/((z−z_2 )^3 ))}=−(2/((z_1 −z_2 )^3 ))=−(2/((2i)^3 ))=(1/(4i))  ⇒∫_(−∞) ^(+∞) (dx/((x^2 +2x+2)^2 ))=2πi((1/(4i)))=(π/2)

I=+dx(x2+2x+2)2,φ(z)=1(z2+2z+2)2Poles:z1=1+i=2e3π4i,z2=2eπ4iI=+φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz1ddz{(zz1)2φ(z)}=limzz1ddz{1(zz2)2}=limzz1{2(zz2)3}=2(z1z2)3=2(2i)3=14i+dx(x2+2x+2)2=2πi(14i)=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com