Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161861 by Rasheed.Sindhi last updated on 23/Dec/21

Prove that     ((1^2 ∙2!+2^2 ∙3!+3^2 ∙4!+∙∙∙+n^2 (n+1)!−2)/((n+1)!))                                                       =n^2 +n−2

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={n}^{\mathrm{2}} +{n}−\mathrm{2} \\ $$

Commented by mr W last updated on 23/Dec/21

after some try & try i got it!

$${after}\:{some}\:{try}\:\&\:{try}\:{i}\:{got}\:{it}! \\ $$

Commented by Rasheed.Sindhi last updated on 24/Dec/21

Sir I′ve not got the result by simplification.  Actually I made sequence   f(1),f(2),f(3),...  and my son (Faaiz Soomro) helped  me to get general formula for f(n):  f(n)=((1^2 ∙2!+2^2 ∙3!+3^2 ∙4!+∙∙∙+n^2 (n+1)!−2)/((n+1)!)) (say)   determinant ((n,(f(n))),(1,0),(2,4),(3,(10)),(4,(18)),(5,(28)),(6,(40)),((∙∙∙),(∙∙∙)),(n,(n^2 +n−2)))

$$\mathbb{S}\mathrm{ir}\:\mathrm{I}'\mathrm{ve}\:\mathrm{not}\:\mathrm{got}\:\mathrm{the}\:\mathrm{result}\:\mathrm{by}\:\mathrm{simplification}. \\ $$$$\mathrm{Actually}\:\mathrm{I}\:\mathrm{made}\:\mathrm{sequence}\: \\ $$$$\mathrm{f}\left(\mathrm{1}\right),\mathrm{f}\left(\mathrm{2}\right),\mathrm{f}\left(\mathrm{3}\right),... \\ $$$$\mathrm{and}\:\mathrm{my}\:\mathrm{son}\:\left(\mathrm{Faaiz}\:\mathrm{Soomro}\right)\:\mathrm{helped} \\ $$$$\mathrm{me}\:\mathrm{to}\:\mathrm{get}\:\mathrm{general}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{f}\left(\mathrm{n}\right): \\ $$$${f}\left({n}\right)=\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!}\:\left({say}\right) \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|}{{n}}&\hline{{f}\left({n}\right)}\\{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{2}}&\hline{\mathrm{4}}\\{\mathrm{3}}&\hline{\mathrm{10}}\\{\mathrm{4}}&\hline{\mathrm{18}}\\{\mathrm{5}}&\hline{\mathrm{28}}\\{\mathrm{6}}&\hline{\mathrm{40}}\\{\centerdot\centerdot\centerdot}&\hline{\centerdot\centerdot\centerdot}\\{{n}}&\hline{{n}^{\mathrm{2}} +{n}−\mathrm{2}}\\\hline\end{array} \\ $$

Commented by Rasheed.Sindhi last updated on 24/Dec/21

Related Question:Q#161800

$$\mathcal{R}{elated}\:\mathcal{Q}{uestion}:\mathcal{Q}#\mathrm{161800} \\ $$

Commented by mr W last updated on 24/Dec/21

i was wondering how you got that  result. to be honest, to prove the  result is not a big problem, there are  many methods. but i′m basically  interested how Σ_(k=1) ^n k^2 (k+1)! can be  simplified at all, i.e. i mainly don′t   want just to prove the result, but how  to obtain the result.

$${i}\:{was}\:{wondering}\:{how}\:{you}\:{got}\:{that} \\ $$$${result}.\:{to}\:{be}\:{honest},\:{to}\:{prove}\:{the} \\ $$$${result}\:{is}\:{not}\:{a}\:{big}\:{problem},\:{there}\:{are} \\ $$$${many}\:{methods}.\:{but}\:{i}'{m}\:{basically} \\ $$$${interested}\:{how}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)!\:{can}\:{be} \\ $$$${simplified}\:{at}\:{all},\:{i}.{e}.\:{i}\:{mainly}\:{don}'{t}\: \\ $$$${want}\:{just}\:{to}\:{prove}\:{the}\:{result},\:{but}\:{how} \\ $$$${to}\:{obtain}\:{the}\:{result}. \\ $$

Commented by mr W last updated on 24/Dec/21

your son is outstandingly good!

$${your}\:{son}\:{is}\:{outstandingly}\:{good}! \\ $$

Commented by Rasheed.Sindhi last updated on 24/Dec/21

I also changed the problem in the  following system:   { ((a_0 =−2 )),((a_n =a_(n−1) +2n)) :}  but have not yet solved.It′s solution  will be certainly        a_n =n^2 +n−2

$$\mathrm{I}\:\mathrm{also}\:\mathrm{changed}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{system}: \\ $$$$\begin{cases}{{a}_{\mathrm{0}} =−\mathrm{2}\:}\\{{a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{n}}\end{cases} \\ $$$${but}\:{have}\:{not}\:{yet}\:{solved}.{It}'{s}\:{solution} \\ $$$${will}\:{be}\:{certainly}\: \\ $$$$\:\:\:\:\:{a}_{{n}} ={n}^{\mathrm{2}} +{n}−\mathrm{2} \\ $$

Commented by mr W last updated on 24/Dec/21

good thinking! sharp observation!

$${good}\:{thinking}!\:{sharp}\:{observation}! \\ $$

Commented by Rasheed.Sindhi last updated on 24/Dec/21

Grateful Sir!

$$\mathbb{G}\mathrm{rateful}\:\mathbb{S}\mathrm{ir}! \\ $$

Answered by mr W last updated on 23/Dec/21

k^2 (k+1)!  =(k+1−1)k(k+1)!  =(k+1)k(k+1)!−k(k−1)k!−2kk!  =(k+1)k(k+1)!−k(k−1)k!−2[(k+1)!−k!]    Σ_(k=1) ^n k^2 (k+1)!  =Σ_(k=1) ^n (k+1)k(k+1)!−Σ_(k=1) ^n k(k−1)k!−2[Σ_(k=1) ^n (k+1)!−Σ_(k=1) ^n k!]  =Σ_(k=2) ^(n+1) k(k−1)k!−Σ_(k=1) ^n k(k−1)k!−2[Σ_(k=2) ^(n+1) k!−Σ_(k=1) ^n k!]  =(n+1)n(n+1)!−2[(n+1)!−1!]  =(n^2 +n−2)(n+1)!+2    Σ_(k=1) ^n k^2 (k+1)!−2=(n^2 +n−2)(n+1)!  ((Σ_(k=1) ^n k^2 (k+1)!−2)/((n+1)!))=n^2 +n−2=(n−1)(n+2) ✓

$${k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)! \\ $$$$=\left({k}+\mathrm{1}−\mathrm{1}\right){k}\left({k}+\mathrm{1}\right)! \\ $$$$=\left({k}+\mathrm{1}\right){k}\left({k}+\mathrm{1}\right)!−{k}\left({k}−\mathrm{1}\right){k}!−\mathrm{2}{kk}! \\ $$$$=\left({k}+\mathrm{1}\right){k}\left({k}+\mathrm{1}\right)!−{k}\left({k}−\mathrm{1}\right){k}!−\mathrm{2}\left[\left({k}+\mathrm{1}\right)!−{k}!\right] \\ $$$$ \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)! \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({k}+\mathrm{1}\right){k}\left({k}+\mathrm{1}\right)!−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({k}−\mathrm{1}\right){k}!−\mathrm{2}\left[\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({k}+\mathrm{1}\right)!−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}!\right] \\ $$$$=\underset{{k}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{k}\left({k}−\mathrm{1}\right){k}!−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({k}−\mathrm{1}\right){k}!−\mathrm{2}\left[\underset{{k}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{k}!−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}!\right] \\ $$$$=\left({n}+\mathrm{1}\right){n}\left({n}+\mathrm{1}\right)!−\mathrm{2}\left[\left({n}+\mathrm{1}\right)!−\mathrm{1}!\right] \\ $$$$=\left({n}^{\mathrm{2}} +{n}−\mathrm{2}\right)\left({n}+\mathrm{1}\right)!+\mathrm{2} \\ $$$$ \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)!−\mathrm{2}=\left({n}^{\mathrm{2}} +{n}−\mathrm{2}\right)\left({n}+\mathrm{1}\right)! \\ $$$$\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!}={n}^{\mathrm{2}} +{n}−\mathrm{2}=\left({n}−\mathrm{1}\right)\left({n}+\mathrm{2}\right)\:\checkmark \\ $$

Commented by mr W last updated on 23/Dec/21

it can also be stated as   ((1^2 ∙2!+2^2 ∙3!+3^2 ∙4!+∙∙∙+n^2 (n+1)!−2)/((n+2)!))=n−1

$${it}\:{can}\:{also}\:{be}\:{stated}\:{as} \\ $$$$\:\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{2}\right)!}={n}−\mathrm{1} \\ $$

Commented by Rasheed.Sindhi last updated on 24/Dec/21

ThanX a Lot sir!

$$\mathcal{T}{han}\mathcal{X}\:{a}\:\mathcal{L}{ot}\:\boldsymbol{{sir}}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com