All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 161899 by HongKing last updated on 23/Dec/21
Find:Ω=∫∞−∞1(1+x2n)2dx;n∈Z
Answered by Ar Brandon last updated on 25/Dec/21
Ω=∫−∞∞dx(1+x2n)2=2∫0∞dx(1+x2n)2=1n∫0∞u12n−1(1+u)2du=1nβ(12n,2−12n)=1n⋅Γ(12n)Γ(2−12n)=1n(1−12n)Γ(12n)Γ(1−12n)=2n−12n2⋅πsin(π2n)n≠12(k+1),k∈Z∖{−1}
Answered by mathmax by abdo last updated on 25/Dec/21
Υ=∫−∞+∞dx(x2n+1)2letf(a)=∫−∞+∞dxx2n+a2n(a>0)⇒f′(a)=−2n∫−∞+∞a2n−1(x2n+a2n)2dx⇒f′(1)=−2n∫−∞+∞dx(x2n+1)2⇒∫−∞+∞dx(x2n+1)2=−12nf′(1)onf(a)=x=at∫−∞+∞adta2nt2n+a2n=2a2n−1∫0+∞dtt2n+1=t=z12n2a2n−1∫0∞1z+112nz12n−1dz=1na2n−1∫0∞z12n−1z+1=1na2n−1.πsin(π2n)=πnsin(π2n)a−2n+1⇒f′(a)=(−2n+1).πnsin(π2n)a−2n⇒f′(1)=π(−2n+1)nsin(π2n)⇒∫−∞+∞dx(x2n+1)2=−12n×π(−2n+1)nsin(π2n)=π(2n−1)2n2sin(π2n)
Commented by HongKing last updated on 25/Dec/21
thankyousomuchcoolmydearSir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com