Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161899 by HongKing last updated on 23/Dec/21

Find:  𝛀 =∫_( -∞) ^( ∞) (1/((1 + x^(2n) )^2 )) dx  ;  n∈Z

Find:Ω=1(1+x2n)2dx;nZ

Answered by Ar Brandon last updated on 25/Dec/21

Ω=∫_(−∞) ^∞ (dx/((1+x^(2n) )^2 ))=2∫_0 ^∞ (dx/((1+x^(2n) )^2 ))=(1/n)∫_0 ^∞ (u^((1/(2n))−1) /((1+u)^2 ))du      =(1/n)β((1/(2n)), 2−(1/(2n)))=(1/n)∙Γ((1/(2n)))Γ(2−(1/(2n)))      =(1/n)(1−(1/(2n)))Γ((1/(2n)))Γ(1−(1/(2n)))      =((2n−1)/(2n^2 ))∙(π/(sin((π/(2n)))))       n≠(1/(2(k+1))), k∈Z\{−1}

Ω=dx(1+x2n)2=20dx(1+x2n)2=1n0u12n1(1+u)2du=1nβ(12n,212n)=1nΓ(12n)Γ(212n)=1n(112n)Γ(12n)Γ(112n)=2n12n2πsin(π2n)n12(k+1),kZ{1}

Answered by mathmax by abdo last updated on 25/Dec/21

Υ=∫_(−∞) ^(+∞)  (dx/((x^(2n) +1)^2 ))  let  f(a)=∫_(−∞) ^(+∞)  (dx/(x^(2n)  +a^(2n) ))    (a>0) ⇒  f^′ (a)=−2n∫_(−∞) ^(+∞)  (a^(2n−1) /((x^(2n)  +a^(2n) )^2 ))dx ⇒f^′ (1)=−2n∫_(−∞) ^(+∞)  (dx/((x^(2n) +1)^2 ))  ⇒∫_(−∞) ^(+∞)  (dx/((x^(2n) +1)^2 ))=−(1/(2n))f^′ (1)  on f(a)=_(x=at)   ∫_(−∞) ^(+∞)  ((adt)/(a^(2n) t^(2n)  +a^(2n) )) =(2/a^(2n−1) )∫_0 ^(+∞)  (dt/(t^(2n) +1))  =_(t=z^(1/(2n)) )    (2/a^(2n−1) ) ∫_0 ^∞   (1/(z+1))(1/(2n))z^((1/(2n))−1) dz  =(1/(na^(2n−1) ))∫_0 ^∞   (z^((1/(2n))−1) /(z+1))=(1/(na^(2n−1) )).(π/(sin((π/(2n)))))=(π/(nsin((π/(2n)))))a^(−2n+1)   ⇒f^′ (a) =(−2n+1).(π/(nsin((π/(2n)))))a^(−2n)  ⇒  f^′ (1) =((π(−2n+1))/(nsin((π/(2n))))) ⇒  ∫_(−∞) ^(+∞)  (dx/((x^(2n) +1)^2 ))=−(1/(2n))×((π(−2n+1))/(nsin((π/(2n)))))  =((π(2n−1))/(2n^2 sin((π/(2n)))))

Υ=+dx(x2n+1)2letf(a)=+dxx2n+a2n(a>0)f(a)=2n+a2n1(x2n+a2n)2dxf(1)=2n+dx(x2n+1)2+dx(x2n+1)2=12nf(1)onf(a)=x=at+adta2nt2n+a2n=2a2n10+dtt2n+1=t=z12n2a2n101z+112nz12n1dz=1na2n10z12n1z+1=1na2n1.πsin(π2n)=πnsin(π2n)a2n+1f(a)=(2n+1).πnsin(π2n)a2nf(1)=π(2n+1)nsin(π2n)+dx(x2n+1)2=12n×π(2n+1)nsin(π2n)=π(2n1)2n2sin(π2n)

Commented by HongKing last updated on 25/Dec/21

thank you so much cool my dear Sir

thankyousomuchcoolmydearSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com