Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161900 by HongKing last updated on 23/Dec/21

0<x;y;z<1  (1-x)(1-y)(1-z)=xyz  Find:  Ω = min (((1-x)/(xy)) + ((1-y)/(yz)) + ((1-z)/(zx)))

0<x;y;z<1 (1x)(1y)(1z)=xyz Find: Ω=min(1xxy+1yyz+1zzx)

Answered by aleks041103 last updated on 24/Dec/21

1−x−y−z+xy+xz+yz=2xyz  ((1-x)/(xy)) + ((1-y)/(yz)) + ((1-z)/(zx))=  =((z−zx+x−xy+y−yz)/(xyz))=  =((1−2xyz)/(xyz))=(1/(xyz))−2  We need to find max of xyz:  (1−x)(1−y)(1−z)=xyz  (1/z)−1=((xy)/((1−x)(1−y)))  ⇒z=(1/(1+((xy)/((1−x)(1−y)))))=(((1−x)(1−y))/((1−x)(1−y)+xy))=  =(((1−x)(1−y)+xy)/((1−x)(1−y)+xy))−((xy)/((1−x)(1−y)+xy))=  =1+((xy)/(1−x−y+2xy))=z(x,y)  ⇒f(x,y,z)=xyz(x,y)=  =xy+((x^2 y^2 )/(1−x−y+2xy))  f_x =(1+((2xy)/(1−x−y+2xy))−((x^2 y(2y−1))/((1−x−y+2xy)^2 )))y=0  f_y =(1+((2xy)/(1−x−y+2xy))+((xy^2 (2x−1))/((1−x−y+2xy)^2 )))x=0  ⇒(1−x−y+2xy)^2 +2xy(1−x−y+2xy)+x^2 y(2x−1)=0  ⇒(1−x−y+2xy)^2 +2xy(1−x−y+2xy)+y^2 x(2y−1)=0  ⇒x^2 (2x−1)y=y^2 x(2y−1)⇒x(2x−1)=y(2y−1)=a  ⇒x,y are solutions to 2p^2 −p−a=0  x=y  (1−2x+2x^2 )^2 +2x^2 (1−2x+2x^2 )+x^3 (2x−1)=0  ...

1xyz+xy+xz+yz=2xyz 1xxy+1yyz+1zzx= =zzx+xxy+yyzxyz= =12xyzxyz=1xyz2 Weneedtofindmaxofxyz: (1x)(1y)(1z)=xyz 1z1=xy(1x)(1y) z=11+xy(1x)(1y)=(1x)(1y)(1x)(1y)+xy= =(1x)(1y)+xy(1x)(1y)+xyxy(1x)(1y)+xy= =1+xy1xy+2xy=z(x,y) f(x,y,z)=xyz(x,y)= =xy+x2y21xy+2xy fx=(1+2xy1xy+2xyx2y(2y1)(1xy+2xy)2)y=0 fy=(1+2xy1xy+2xy+xy2(2x1)(1xy+2xy)2)x=0 (1xy+2xy)2+2xy(1xy+2xy)+x2y(2x1)=0 (1xy+2xy)2+2xy(1xy+2xy)+y2x(2y1)=0 x2(2x1)y=y2x(2y1)x(2x1)=y(2y1)=a x,yaresolutionsto2p2pa=0 x=y (12x+2x2)2+2x2(12x+2x2)+x3(2x1)=0 ...

Commented byHongKing last updated on 28/Dec/21

thank you dear Sir cool

thankyoudearSircool

Terms of Service

Privacy Policy

Contact: info@tinkutara.com