Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161946 by mathlove last updated on 24/Dec/21

Answered by Rasheed.Sindhi last updated on 29/Dec/21

x+y(x+1)=3⇒y=((3−x)/(x+1))                ⇒y+1=((3−x+x+1)/(x+1))=(4/(x+1))  y+z(y+1)=5⇒((3−x)/(x+1))+z((4/(x+1)))=5         ⇒3−x+4z=5x+5⇒x=((2z−1)/3)  z+x(z+1)=7⇒z+(((2z−1)/3))(z+1)=7  ⇒3z+2z^2 +z−1=21        z^2 +2z−11=0  z=((−2±(√(4+44)))/2)=((−2±4(√3))/2)=−1±2(√3)  x=((2z−1)/3)=((2(−1±2(√3) )−1)/3)=((−3±4(√3))/3)  y=((3−x)/(x+1))=((3−(((−3±4(√3))/3)))/((((−3±4(√3))/3))+1))       =((9+3∓4(√3))/(±4(√3)))×((±4(√3))/(±4(√3)))=((±48(√3)−48)/(48))      y=−1±(√3)  x+y+z=(((−3±4(√3))/3))+(−1±(√3))+(−1±2(√(3 )) )  =((−3±4(√3) −3±3(√3)−3±6(√3)  )/3)  =((−9±13(√3) )/3)  (x+y+z)^2 =(((−9±13(√3) )/3))^2           =((81∓234(√3) +507)/9)          =((588∓234(√3) )/9)=((196∓78(√3))/3)

$${x}+{y}\left({x}+\mathrm{1}\right)=\mathrm{3}\Rightarrow{y}=\frac{\mathrm{3}−{x}}{{x}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{y}+\mathrm{1}=\frac{\mathrm{3}−{x}+{x}+\mathrm{1}}{{x}+\mathrm{1}}=\frac{\mathrm{4}}{{x}+\mathrm{1}} \\ $$$${y}+{z}\left({y}+\mathrm{1}\right)=\mathrm{5}\Rightarrow\frac{\mathrm{3}−{x}}{{x}+\mathrm{1}}+{z}\left(\frac{\mathrm{4}}{{x}+\mathrm{1}}\right)=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\mathrm{3}−{x}+\mathrm{4}{z}=\mathrm{5}{x}+\mathrm{5}\Rightarrow{x}=\frac{\mathrm{2}{z}−\mathrm{1}}{\mathrm{3}} \\ $$$${z}+{x}\left({z}+\mathrm{1}\right)=\mathrm{7}\Rightarrow{z}+\left(\frac{\mathrm{2}{z}−\mathrm{1}}{\mathrm{3}}\right)\left({z}+\mathrm{1}\right)=\mathrm{7} \\ $$$$\Rightarrow\mathrm{3}{z}+\mathrm{2}{z}^{\mathrm{2}} +{z}−\mathrm{1}=\mathrm{21} \\ $$$$\:\:\:\:\:\:{z}^{\mathrm{2}} +\mathrm{2}{z}−\mathrm{11}=\mathrm{0} \\ $$$${z}=\frac{−\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{44}}}{\mathrm{2}}=\frac{−\mathrm{2}\pm\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{2}}=−\mathrm{1}\pm\mathrm{2}\sqrt{\mathrm{3}} \\ $$$${x}=\frac{\mathrm{2}{z}−\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{2}\left(−\mathrm{1}\pm\mathrm{2}\sqrt{\mathrm{3}}\:\right)−\mathrm{1}}{\mathrm{3}}=\frac{−\mathrm{3}\pm\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${y}=\frac{\mathrm{3}−{x}}{{x}+\mathrm{1}}=\frac{\mathrm{3}−\left(\frac{−\mathrm{3}\pm\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)}{\left(\frac{−\mathrm{3}\pm\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)+\mathrm{1}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{9}+\mathrm{3}\mp\mathrm{4}\sqrt{\mathrm{3}}}{\pm\mathrm{4}\sqrt{\mathrm{3}}}×\frac{\pm\mathrm{4}\sqrt{\mathrm{3}}}{\pm\mathrm{4}\sqrt{\mathrm{3}}}=\frac{\pm\mathrm{48}\sqrt{\mathrm{3}}−\mathrm{48}}{\mathrm{48}} \\ $$$$\:\:\:\:{y}=−\mathrm{1}\pm\sqrt{\mathrm{3}} \\ $$$${x}+{y}+{z}=\left(\frac{−\mathrm{3}\pm\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)+\left(−\mathrm{1}\pm\sqrt{\mathrm{3}}\right)+\left(−\mathrm{1}\pm\mathrm{2}\sqrt{\mathrm{3}\:}\:\right) \\ $$$$=\frac{−\mathrm{3}\pm\mathrm{4}\sqrt{\mathrm{3}}\:−\mathrm{3}\pm\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{3}\pm\mathrm{6}\sqrt{\mathrm{3}}\:\:}{\mathrm{3}} \\ $$$$=\frac{−\mathrm{9}\pm\mathrm{13}\sqrt{\mathrm{3}}\:}{\mathrm{3}} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} =\left(\frac{−\mathrm{9}\pm\mathrm{13}\sqrt{\mathrm{3}}\:}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{81}\mp\mathrm{234}\sqrt{\mathrm{3}}\:+\mathrm{507}}{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{588}\mp\mathrm{234}\sqrt{\mathrm{3}}\:}{\mathrm{9}}=\frac{\mathrm{196}\mp\mathrm{78}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/21

 T^(H^A N) X_(A_(LO_(T) ^(L) T) )       S    I_(I_• ) ^(•_ )     R

$$\:\underset{\underset{\mathrm{L}\underset{\mathrm{T}} {\overset{\mathrm{L}} {\mathrm{O}}T}} {\mathrm{A}}} {\mathbb{T}^{\mathbb{H}^{\mathbb{A}} \mathbb{N}} \mathbb{X}}\: \\ $$$$\:\:\:\mathcal{S}\:\:\:\:\underset{\underset{\bullet} {\mathrm{I}}} {\overset{\underset{} {\bullet}} {\mathrm{I}}}\:\:\:\:\mathcal{R} \\ $$

Answered by mr W last updated on 29/Dec/21

let  u=x+1  v=y+1  w=z+1  eqn. (i) becomes  u−1+v−1+(u−1)(v−1)=3  uv=4   ...(I)  similarly  vw=6   ...(II)  wu=8   ...(III)  (I)×(II)×(III):  (uvw)^2 =4×6×8=192  uvw=±(√(192))=±8(√3)   ...(IV)  (IV)/(I):  w=±((8(√3))/4)=±2(√3)=z+1 ⇒z=−1±2(√3)  similarly  u=±((8(√3))/6)=±((4(√3))/3)=x+1 ⇒x=−1±((4(√3))/3)  v=±((8(√3))/8)=±(√3)=y+1 ⇒y=−1±(√3)  (x+y+z)^2 =(u+v+w−3)^2 =(±((4(√3))/3)±(√3)±2(√3)−3)^2   =(±((13(√3))/3)−3)^2 = { (((196−78(√3))/3)),(((196+78(√3))/3)) :}

$${let} \\ $$$${u}={x}+\mathrm{1} \\ $$$${v}={y}+\mathrm{1} \\ $$$${w}={z}+\mathrm{1} \\ $$$${eqn}.\:\left({i}\right)\:{becomes} \\ $$$${u}−\mathrm{1}+{v}−\mathrm{1}+\left({u}−\mathrm{1}\right)\left({v}−\mathrm{1}\right)=\mathrm{3} \\ $$$${uv}=\mathrm{4}\:\:\:...\left({I}\right) \\ $$$${similarly} \\ $$$${vw}=\mathrm{6}\:\:\:...\left({II}\right) \\ $$$${wu}=\mathrm{8}\:\:\:...\left({III}\right) \\ $$$$\left({I}\right)×\left({II}\right)×\left({III}\right): \\ $$$$\left({uvw}\right)^{\mathrm{2}} =\mathrm{4}×\mathrm{6}×\mathrm{8}=\mathrm{192} \\ $$$${uvw}=\pm\sqrt{\mathrm{192}}=\pm\mathrm{8}\sqrt{\mathrm{3}}\:\:\:...\left({IV}\right) \\ $$$$\left({IV}\right)/\left({I}\right): \\ $$$${w}=\pm\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{4}}=\pm\mathrm{2}\sqrt{\mathrm{3}}={z}+\mathrm{1}\:\Rightarrow{z}=−\mathrm{1}\pm\mathrm{2}\sqrt{\mathrm{3}} \\ $$$${similarly} \\ $$$${u}=\pm\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{6}}=\pm\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}={x}+\mathrm{1}\:\Rightarrow{x}=−\mathrm{1}\pm\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${v}=\pm\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{8}}=\pm\sqrt{\mathrm{3}}={y}+\mathrm{1}\:\Rightarrow{y}=−\mathrm{1}\pm\sqrt{\mathrm{3}} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} =\left({u}+{v}+{w}−\mathrm{3}\right)^{\mathrm{2}} =\left(\pm\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\pm\sqrt{\mathrm{3}}\pm\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}\right)^{\mathrm{2}} \\ $$$$=\left(\pm\frac{\mathrm{13}\sqrt{\mathrm{3}}}{\mathrm{3}}−\mathrm{3}\right)^{\mathrm{2}} =\begin{cases}{\frac{\mathrm{196}−\mathrm{78}\sqrt{\mathrm{3}}}{\mathrm{3}}}\\{\frac{\mathrm{196}+\mathrm{78}\sqrt{\mathrm{3}}}{\mathrm{3}}}\end{cases} \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/21

Sir I didn′t understand last line.

$$\mathrm{Sir}\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{understand}\:\mathrm{last}\:\mathrm{line}. \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/21

SMART  METHOD  SiR!

$$\mathbb{SMART}\:\:\mathcal{METHOD}\:\:\mathrm{SiR}! \\ $$

Commented by mr W last updated on 29/Dec/21

it only shows that there are two  values.

$${it}\:{only}\:{shows}\:{that}\:{there}\:{are}\:{two} \\ $$$${values}. \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/21

Again Thanx!

$$\mathrm{Again}\:\mathrm{Thanx}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com