Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 162001 by SANOGO last updated on 25/Dec/21

nature of:  ∫_0 ^(+oo) ((sint)/(e^t −1))dt

$${nature}\:{of}: \\ $$$$\int_{\mathrm{0}} ^{+{oo}} \frac{{sint}}{{e}^{{t}} −\mathrm{1}}{dt} \\ $$

Answered by mathmax by abdo last updated on 25/Dec/21

Ψ=∫_0 ^∞   ((sint)/(e^t −1))dt ⇒Ψ=∫_0 ^∞  ((e^(−t) sint)/(1−e^(−t) ))dt  =∫_0 ^∞  e^(−t) sint Σ_(n=0) ^∞  e^(−nt) dt  =Σ_(n=0) ^∞  ∫_0 ^∞  e^(−(n+1)t) sint dt  but ∫_0 ^∞   e^(−(n+1)t) sint dt =Im(∫_0 ^∞  e^(−(n+1)t+it) dt)  and ∫_0 ^∞  e^((−(n+1)+i)t) dt =[(1/(−(n+1)+i))e^((−(n+1)+i)t) ]_0 ^∞   =−(1/(n+1−i))(−1) =(1/(n+1−i))=((n+1+i)/((n+1)^2 +1)) ⇒  Ψ=Σ_(n=0) ^∞  (1/((n+1)^2 +1))=Σ_(n=1) ^∞  (1/(n^2 +1))  et cette serie est convergente  donc Ψ est cv.

$$\Psi=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{sint}}{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}\mathrm{dt}\:\Rightarrow\Psi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{t}} \mathrm{sint}}{\mathrm{1}−\mathrm{e}^{−\mathrm{t}} }\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{t}} \mathrm{sint}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nt}} \mathrm{dt} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{t}} \mathrm{sint}\:\mathrm{dt} \\ $$$$\mathrm{but}\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{t}} \mathrm{sint}\:\mathrm{dt}\:=\mathrm{Im}\left(\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{t}+\mathrm{it}} \mathrm{dt}\right) \\ $$$$\mathrm{and}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{\left(−\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{i}\right)\mathrm{t}} \mathrm{dt}\:=\left[\frac{\mathrm{1}}{−\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{i}}\mathrm{e}^{\left(−\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{i}\right)\mathrm{t}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}−\mathrm{i}}\left(−\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}−\mathrm{i}}=\frac{\mathrm{n}+\mathrm{1}+\mathrm{i}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow \\ $$$$\Psi=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\:\:\mathrm{et}\:\mathrm{cette}\:\mathrm{serie}\:\mathrm{est}\:\mathrm{convergente} \\ $$$$\mathrm{donc}\:\Psi\:\mathrm{est}\:\mathrm{cv}. \\ $$

Commented by Ar Brandon last updated on 25/Dec/21

Σ_(n=1) ^∞ (1/(n^2 +φ^2 ))=((πcoth(πφ))/(2φ))−(1/(2φ^2 ))  Σ_(n=1) ^∞ (1/(n^2 +1))=(1/2)(πcoth(π)−1)

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\phi^{\mathrm{2}} }=\frac{\pi\mathrm{coth}\left(\pi\phi\right)}{\mathrm{2}\phi}−\frac{\mathrm{1}}{\mathrm{2}\phi^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\pi\mathrm{coth}\left(\pi\right)−\mathrm{1}\right) \\ $$

Commented by SANOGO last updated on 25/Dec/21

merci bien

$${merci}\:{bien} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com