Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162062 by HongKing last updated on 25/Dec/21

Ω(α;β) =∫_( -1) ^( 1)  (((1+x)^(2𝛂-1)  (1-x)^(2𝛃-1) )/((1+x^2 )^(𝛂+𝛃) )) dx ; α;β>0  find a closed form and prove that:  Ω(3,5) > (√(Ω(4,5)∙Ω(3,6)))

$$\Omega\left(\alpha;\beta\right)\:=\underset{\:-\mathrm{1}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}\boldsymbol{\alpha}-\mathrm{1}} \:\left(\mathrm{1}-\mathrm{x}\right)^{\mathrm{2}\boldsymbol{\beta}-\mathrm{1}} }{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\boldsymbol{\alpha}+\boldsymbol{\beta}} }\:\mathrm{dx}\:;\:\alpha;\beta>\mathrm{0} \\ $$ $$\mathrm{find}\:\mathrm{a}\:\mathrm{closed}\:\mathrm{form}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}: \\ $$ $$\Omega\left(\mathrm{3},\mathrm{5}\right)\:>\:\sqrt{\Omega\left(\mathrm{4},\mathrm{5}\right)\centerdot\Omega\left(\mathrm{3},\mathrm{6}\right)} \\ $$

Answered by mindispower last updated on 27/Dec/21

=∫_(−(π/4)) ^(π/4) ((((√2))^(2a+2b−2) cos^(2a−1) (x−(π/4))cos^(2b−1) (x+(π/4)))/(cos^2 (x)cos^(2b+2a−2) (x)))cos^(2(a+b)) (x)  =2^(a+b−1) ∫_(−(π/4)) ^(π/4) cos^(2a−1) (x−(π/4))cos^(2b−1) (x+(𝛑/4)bdt−2)dx  yu→x+(π/4)  =2^(a+b−1) ∫_0 ^(π/2) sin^(2a−1) (y)cos^(2b−1) (y)dy  =2^(a+b−2) .2∫_0 ^(π/2) sin^(2a−1) (y)cos^(2b−1) (y)dy  β(x,y)=2∫_0 ^(π/2) sin^(2x−1) (t)cos^(2y−1) (t)dt beta Functionn  =β(a,b).2^(a+b−2) =2^(a+b−2) .((Γ(a)Γ(b))/(Γ(a+b)))  Ω(a,b)=2^(a+b−2) .β(a,b)  Ω(3,6)=2^7 .((2!.5!)/(8!))  Ω(4,5)=2^7 .((3!.4!)/(8!))  Ω(3,5)=2^6 .((2!.4!)/(7!))  ⇔.((24)/(7!))>2^7 .(1/(8!)).(√((2.5!.4!.3!)))  24.8>(√(2.5!.4.3.2.3.2.))  24.8>(√((24).(2.3.4).2.5.3.2))  ⇔8>(√(60)) true⇒Ω(3,5)>(√(Ω(3,6)Ω(4,5)))

$$=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}{a}+\mathrm{2}{b}−\mathrm{2}} {cos}^{\mathrm{2}{a}−\mathrm{1}} \left({x}−\frac{\pi}{\mathrm{4}}\right){cos}^{\mathrm{2}{b}−\mathrm{1}} \left({x}+\frac{\pi}{\mathrm{4}}\right)}{{cos}^{\mathrm{2}} \left({x}\right){cos}^{\mathrm{2}{b}+\mathrm{2}{a}−\mathrm{2}} \left({x}\right)}{cos}^{\mathrm{2}\left({a}+{b}\right)} \left({x}\right) \\ $$ $$=\mathrm{2}^{{a}+{b}−\mathrm{1}} \int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} {cos}^{\mathrm{2}{a}−\mathrm{1}} \left({x}−\frac{\pi}{\mathrm{4}}\right){cos}^{\mathrm{2}{b}−\mathrm{1}} \left(\boldsymbol{{x}}+\frac{\boldsymbol{\pi}}{\mathrm{4}}{bdt}−\mathrm{2}\right){dx} \\ $$ $${yu}\rightarrow{x}+\frac{\pi}{\mathrm{4}} \\ $$ $$=\mathrm{2}^{{a}+{b}−\mathrm{1}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{a}−\mathrm{1}} \left({y}\right){cos}^{\mathrm{2}{b}−\mathrm{1}} \left({y}\right){dy} \\ $$ $$=\mathrm{2}^{{a}+{b}−\mathrm{2}} .\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{a}−\mathrm{1}} \left({y}\right){cos}^{\mathrm{2}{b}−\mathrm{1}} \left({y}\right){dy} \\ $$ $$\beta\left({x},{y}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{x}−\mathrm{1}} \left({t}\right){cos}^{\mathrm{2}{y}−\mathrm{1}} \left({t}\right){dt}\:{beta}\:{Functionn} \\ $$ $$=\beta\left({a},{b}\right).\mathrm{2}^{{a}+{b}−\mathrm{2}} =\mathrm{2}^{{a}+{b}−\mathrm{2}} .\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)} \\ $$ $$\Omega\left({a},{b}\right)=\mathrm{2}^{{a}+{b}−\mathrm{2}} .\beta\left({a},{b}\right) \\ $$ $$\Omega\left(\mathrm{3},\mathrm{6}\right)=\mathrm{2}^{\mathrm{7}} .\frac{\mathrm{2}!.\mathrm{5}!}{\mathrm{8}!} \\ $$ $$\Omega\left(\mathrm{4},\mathrm{5}\right)=\mathrm{2}^{\mathrm{7}} .\frac{\mathrm{3}!.\mathrm{4}!}{\mathrm{8}!} \\ $$ $$\Omega\left(\mathrm{3},\mathrm{5}\right)=\mathrm{2}^{\mathrm{6}} .\frac{\mathrm{2}!.\mathrm{4}!}{\mathrm{7}!} \\ $$ $$\Leftrightarrow.\frac{\mathrm{24}}{\mathrm{7}!}>\mathrm{2}^{\mathrm{7}} .\frac{\mathrm{1}}{\mathrm{8}!}.\sqrt{\left(\mathrm{2}.\mathrm{5}!.\mathrm{4}!.\mathrm{3}!\right)} \\ $$ $$\mathrm{24}.\mathrm{8}>\sqrt{\mathrm{2}.\mathrm{5}!.\mathrm{4}.\mathrm{3}.\mathrm{2}.\mathrm{3}.\mathrm{2}.} \\ $$ $$\mathrm{24}.\mathrm{8}>\sqrt{\left(\mathrm{24}\right).\left(\mathrm{2}.\mathrm{3}.\mathrm{4}\right).\mathrm{2}.\mathrm{5}.\mathrm{3}.\mathrm{2}} \\ $$ $$\Leftrightarrow\mathrm{8}>\sqrt{\mathrm{60}}\:{true}\Rightarrow\Omega\left(\mathrm{3},\mathrm{5}\right)>\sqrt{\Omega\left(\mathrm{3},\mathrm{6}\right)\Omega\left(\mathrm{4},\mathrm{5}\right)} \\ $$ $$ \\ $$ $$ \\ $$

Commented byHongKing last updated on 28/Dec/21

cool my dear Sir thank you so much

$$\mathrm{cool}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented bymindispower last updated on 29/Dec/21

withe pleasur sir have nice day

$${withe}\:{pleasur}\:{sir}\:{have}\:{nice}\:{day} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com