All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 162062 by HongKing last updated on 25/Dec/21
Ω(α;β)=∫1−1(1+x)2α−1(1−x)2β−1(1+x2)α+βdx;α;β>0 findaclosedformandprovethat: Ω(3,5)>Ω(4,5)⋅Ω(3,6)
Answered by mindispower last updated on 27/Dec/21
=∫−π4π4(2)2a+2b−2cos2a−1(x−π4)cos2b−1(x+π4)cos2(x)cos2b+2a−2(x)cos2(a+b)(x) =2a+b−1∫−π4π4cos2a−1(x−π4)cos2b−1(x+π4bdt−2)dx yu→x+π4 =2a+b−1∫0π2sin2a−1(y)cos2b−1(y)dy =2a+b−2.2∫0π2sin2a−1(y)cos2b−1(y)dy β(x,y)=2∫0π2sin2x−1(t)cos2y−1(t)dtbetaFunctionn =β(a,b).2a+b−2=2a+b−2.Γ(a)Γ(b)Γ(a+b) Ω(a,b)=2a+b−2.β(a,b) Ω(3,6)=27.2!.5!8! Ω(4,5)=27.3!.4!8! Ω(3,5)=26.2!.4!7! ⇔.247!>27.18!.(2.5!.4!.3!) 24.8>2.5!.4.3.2.3.2. 24.8>(24).(2.3.4).2.5.3.2 ⇔8>60true⇒Ω(3,5)>Ω(3,6)Ω(4,5)
Commented byHongKing last updated on 28/Dec/21
coolmydearSirthankyousomuch
Commented bymindispower last updated on 29/Dec/21
withepleasursirhaveniceday
Terms of Service
Privacy Policy
Contact: info@tinkutara.com