Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 162074 by naka3546 last updated on 26/Dec/21

Find  the  exact  value  of         Σ_(k=0) ^(1004)  ( _k ^(2014) ) ∙ 3^k  .

$${Find}\:\:{the}\:\:{exact}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{1004}} {\sum}}\:\left(\underset{{k}} {\overset{\mathrm{2014}} {\:}}\right)\:\centerdot\:\mathrm{3}^{{k}} \:. \\ $$

Answered by Rasheed.Sindhi last updated on 26/Dec/21

(a+b)^n =Σ_(k=0) ^(n)  ((n),(k) )a^(n−k) b^k   Let a=1 , b=3 & n=2014  S(2015)=(1+3)^(2014) =Σ_(k=0) ^(2014)  (((2014)),((    k)) ).3^k =4^(2014) ....(i)  We′ve to determine first 1005 terms(sum)  i-e Σ_(k=0) ^(1004)  ( _k ^(2014) ) ∙ 3^k    S(1to2015)={t_1 +t_2 +...t_(1007) +(t_(1008) /2)}_(S_1 )                    +{(t_(1008) /2)+t_(1009) +t_(1010) +...+t_(2015) }_(S_2 )    ∵Here S_1 =S_2     ∴ S_1 =S/2=4^(2014) /2  ⇒S_1 =4^(2013)   ∴ S(1to1005)=S_1 −(t_(1006) +t_(1007) +(t_(1008) /2))  =4^(2013) −( (((2014)),((1005)) ).3^(1005) + (((2014)),((1006)) ).3^(1006) +(1/2) (((2014)),((1007)) ).3^(1007) )  =4^(2013) −3^(1005) ( (((2014)),((1005)) )+3 (((2014)),((1006)) )+(9/2) (((2014)),((1007)) ))

$$\left({a}+{b}\right)^{{n}} =\overset{{n}} {\underset{{k}=\mathrm{0}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{{n}−{k}} {b}^{{k}} \\ $$$${Let}\:{a}=\mathrm{1}\:,\:{b}=\mathrm{3}\:\&\:{n}=\mathrm{2014} \\ $$$${S}\left(\mathrm{2015}\right)=\left(\mathrm{1}+\mathrm{3}\right)^{\mathrm{2014}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{2014}} {\sum}}\begin{pmatrix}{\mathrm{2014}}\\{\:\:\:\:{k}}\end{pmatrix}.\mathrm{3}^{{k}} =\mathrm{4}^{\mathrm{2014}} ....\left({i}\right) \\ $$$${We}'{ve}\:{to}\:{determine}\:{first}\:\mathrm{1005}\:{terms}\left({sum}\right) \\ $$$${i}-{e}\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{1004}} {\sum}}\:\left(\underset{{k}} {\overset{\mathrm{2014}} {\:}}\right)\:\centerdot\:\mathrm{3}^{{k}} \: \\ $$$${S}\left(\mathrm{1to2015}\right)=\underset{\mathrm{S}_{\mathrm{1}} } {\underbrace{\left\{\mathrm{t}_{\mathrm{1}} +\mathrm{t}_{\mathrm{2}} +...\mathrm{t}_{\mathrm{1007}} +\frac{\mathrm{t}_{\mathrm{1008}} }{\mathrm{2}}\right\}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\underset{{S}_{\mathrm{2}} } {\underbrace{\left\{\frac{\mathrm{t}_{\mathrm{1008}} }{\mathrm{2}}+\mathrm{t}_{\mathrm{1009}} +\mathrm{t}_{\mathrm{1010}} +...+\mathrm{t}_{\mathrm{2015}} \right\}}} \\ $$$$\:\because{Here}\:{S}_{\mathrm{1}} ={S}_{\mathrm{2}} \:\:\:\:\therefore\:{S}_{\mathrm{1}} ={S}/\mathrm{2}=\mathrm{4}^{\mathrm{2014}} /\mathrm{2} \\ $$$$\Rightarrow{S}_{\mathrm{1}} =\mathrm{4}^{\mathrm{2013}} \\ $$$$\therefore\:{S}\left(\mathrm{1to1005}\right)={S}_{\mathrm{1}} −\left(\mathrm{t}_{\mathrm{1006}} +\mathrm{t}_{\mathrm{1007}} +\frac{\mathrm{t}_{\mathrm{1008}} }{\mathrm{2}}\right) \\ $$$$=\mathrm{4}^{\mathrm{2013}} −\left(\begin{pmatrix}{\mathrm{2014}}\\{\mathrm{1005}}\end{pmatrix}.\mathrm{3}^{\mathrm{1005}} +\begin{pmatrix}{\mathrm{2014}}\\{\mathrm{1006}}\end{pmatrix}.\mathrm{3}^{\mathrm{1006}} +\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{2014}}\\{\mathrm{1007}}\end{pmatrix}.\mathrm{3}^{\mathrm{1007}} \right) \\ $$$$=\mathrm{4}^{\mathrm{2013}} −\mathrm{3}^{\mathrm{1005}} \left(\begin{pmatrix}{\mathrm{2014}}\\{\mathrm{1005}}\end{pmatrix}+\mathrm{3}\begin{pmatrix}{\mathrm{2014}}\\{\mathrm{1006}}\end{pmatrix}+\frac{\mathrm{9}}{\mathrm{2}}\begin{pmatrix}{\mathrm{2014}}\\{\mathrm{1007}}\end{pmatrix}\right) \\ $$

Commented by naka3546 last updated on 26/Dec/21

Thank  you,  sir.

$${Thank}\:\:{you},\:\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com