Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 162189 by SANOGO last updated on 27/Dec/21

show the converge^ nce and calculate  ∫_(−1) ^1 (√((1−t)/(1+t))) dt

showtheconvergenceandcalculate111t1+tdt

Commented by Ar Brandon last updated on 27/Dec/21

I=∫_(−1) ^1 (√((1−t)/(1+t)))dt=∫_(−1) ^1 ((1−t)/( (√(1−t^2 ))))dt     =∫_(−1) ^1 (dt/( (√(1−t^2 ))))−∫(t/( (√(1−t^2 ))))dt     =[arcsin(t)]_(−1) ^1 −[(√(1−t^2 ))]_(−1) ^1 =π

I=111t1+tdt=111t1t2dt=11dt1t2t1t2dt=[arcsin(t)]11[1t2]11=π

Commented by SANOGO last updated on 28/Dec/21

thank you

thankyou

Answered by mathmax by abdo last updated on 27/Dec/21

I=∫_(−1) ^1 (√((1−t)/(1+t)))dt  ⇒I=∫_(−1) ^0 (√((1−t)/(1+t)))dt +∫_0 ^1 (√((1−t)/(1+t)))dt  ∫_(−1) ^0 (√((1−t)/(1+t)))dt =_(t=−u)    −∫_0 ^1 (√((1+u)/(1−u)))du  =_(u=cosθ)    −∫_(π/2) ^0 (√((2cos^2 ((θ/2)))/(2sin^2 ((θ/2)))))(−sinθ)dθ  =−∫_0 ^(π/2)   ((cos((θ/2)))/(sin((θ/2))))×2sin((θ/2))cos((θ/2))dθ  =−2∫_0 ^(π/2) cos^2 ((θ/2))dθ =−∫_0 ^(π/2) (1+cosθ)dθ  =−(π/2)−[sinθ]_0 ^(π/2)  =−(π/2)−1  ∫_0 ^1 (√((1−t)/(1+t)))dt =_(t=cosθ)    ∫_(π/2) ^0 (√((1−cosθ)/(1+cosθ)))(−sinθ)dθ  =∫_0 ^(π/2) (√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2)))))sinθ dθ  =∫_0 ^(π/2)  ((sin((θ/2)))/(cos((θ/2))))×2sin((θ/2))cos((θ/2))dθ  =2∫_0 ^(π/2)  sin^2 ((θ/2))dθ =∫_0 ^(π/2) (1−cos(θ))dθ  =(π/2)−[sinθ]_0 ^(π/2)  =(π/2)−1 ⇒  I=−(π/2)−1+(π/2)−1 ⇒I =−2

I=111t1+tdtI=101t1+tdt+011t1+tdt101t1+tdt=t=u011+u1udu=u=cosθπ202cos2(θ2)2sin2(θ2)(sinθ)dθ=0π2cos(θ2)sin(θ2)×2sin(θ2)cos(θ2)dθ=20π2cos2(θ2)dθ=0π2(1+cosθ)dθ=π2[sinθ]0π2=π21011t1+tdt=t=cosθπ201cosθ1+cosθ(sinθ)dθ=0π22sin2(θ2)2cos2(θ2)sinθdθ=0π2sin(θ2)cos(θ2)×2sin(θ2)cos(θ2)dθ=20π2sin2(θ2)dθ=0π2(1cos(θ))dθ=π2[sinθ]0π2=π21I=π21+π21I=2

Commented by SANOGO last updated on 27/Dec/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com