Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 162253 by ZiYangLee last updated on 28/Dec/21

The tangent of a parabola y^2 =4ax at the point  P (ap^2 , 2ap) intersects the line x+a=0 at T .  (i) If M is the midpoint of PT , find the         coordinates of M in terms of a and p.  (ii) Prove that the equation of locus of M is          y^2 (2x+a)=a(3x+a)^2

$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{ax}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point} \\ $$$${P}\:\left({ap}^{\mathrm{2}} ,\:\mathrm{2}{ap}\right)\:\mathrm{intersects}\:\mathrm{the}\:\mathrm{line}\:{x}+{a}=\mathrm{0}\:\mathrm{at}\:{T}\:. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{If}\:{M}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{PT}\:,\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\:\:\:\:\:\:\mathrm{coordinates}\:\mathrm{of}\:{M}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{a}\:\mathrm{and}\:{p}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{locus}\:\mathrm{of}\:{M}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:{y}^{\mathrm{2}} \left(\mathrm{2}{x}+{a}\right)={a}\left(\mathrm{3}{x}+{a}\right)^{\mathrm{2}} \\ $$

Answered by som(math1967) last updated on 28/Dec/21

y^2 =4ax  2y(dy/dx)=4a  [(dy/dx)]_(ap^2 ,2ap) =((4a)/(4ap))=(1/p)  ∴slope of tanjent=(1/p)  equation of tanjent   (y−2ap)=(1/p)(x−ap^2 )  yp−2ap^2 =x−ap^2   x−yp+ap^2 =0  put x=−a [to find pt T]  −a+ap^2 =yp  y=((ap^2 −a)/p)  ∴P(ap^2 ,2ap)    T(−a,((ap^2 −a)/p))  ∴mid pt of PT   x=((−a+ap^2 )/2)  y=((2ap+((ap^2 −a)/p))/2)=((3ap^2 −a)/(2p))            ans i)  x=((−a+ap^2 )/2)⇒p^2 =((2x+a)/a)  y=((3ap^2 −a)/(2p))  2yp=3ap^2 −a  4y^2 p^2 =(3ap^2 −a)^2   4y^2 (((2x+a)/a))=(((6ax+3a^2 −a^2 )/a))^2   4y^2 (2x+a)=(6ax+2a^2 )^2 ×(a/a^2 )  4y^2 (2x+a)=((4a^2 (3x+a)^2 )/a)  y^2 (2x+a)=a(3x+a)^2   y^2 (2x+a)=a(3x+a)^2    [proved]

$${y}^{\mathrm{2}} =\mathrm{4}{ax} \\ $$$$\mathrm{2}{y}\frac{{dy}}{{dx}}=\mathrm{4}{a} \\ $$$$\left[\frac{{dy}}{{dx}}\right]_{{ap}^{\mathrm{2}} ,\mathrm{2}{ap}} =\frac{\mathrm{4}{a}}{\mathrm{4}{ap}}=\frac{\mathrm{1}}{{p}} \\ $$$$\therefore{slope}\:{of}\:{tanjent}=\frac{\mathrm{1}}{{p}} \\ $$$${equation}\:{of}\:{tanjent}\: \\ $$$$\left({y}−\mathrm{2}{ap}\right)=\frac{\mathrm{1}}{{p}}\left({x}−{ap}^{\mathrm{2}} \right) \\ $$$${yp}−\mathrm{2}{ap}^{\mathrm{2}} ={x}−{ap}^{\mathrm{2}} \\ $$$${x}−{yp}+{ap}^{\mathrm{2}} =\mathrm{0} \\ $$$${put}\:{x}=−{a}\:\left[{to}\:{find}\:{pt}\:{T}\right] \\ $$$$−{a}+{ap}^{\mathrm{2}} ={yp} \\ $$$${y}=\frac{{ap}^{\mathrm{2}} −{a}}{{p}} \\ $$$$\therefore{P}\left({ap}^{\mathrm{2}} ,\mathrm{2}{ap}\right)\:\:\:\:{T}\left(−{a},\frac{{ap}^{\mathrm{2}} −{a}}{{p}}\right) \\ $$$$\therefore{mid}\:{pt}\:{of}\:{PT} \\ $$$$\:{x}=\frac{−{a}+{ap}^{\mathrm{2}} }{\mathrm{2}}\:\:{y}=\frac{\mathrm{2}{ap}+\frac{{ap}^{\mathrm{2}} −{a}}{{p}}}{\mathrm{2}}=\frac{\mathrm{3}{ap}^{\mathrm{2}} −{a}}{\mathrm{2}{p}} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:{ans}\:{i}\right) \\ $$$${x}=\frac{−{a}+{ap}^{\mathrm{2}} }{\mathrm{2}}\Rightarrow{p}^{\mathrm{2}} =\frac{\mathrm{2}{x}+{a}}{{a}} \\ $$$${y}=\frac{\mathrm{3}{ap}^{\mathrm{2}} −{a}}{\mathrm{2}{p}} \\ $$$$\mathrm{2}{yp}=\mathrm{3}{ap}^{\mathrm{2}} −{a} \\ $$$$\mathrm{4}{y}^{\mathrm{2}} {p}^{\mathrm{2}} =\left(\mathrm{3}{ap}^{\mathrm{2}} −{a}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{y}^{\mathrm{2}} \left(\frac{\mathrm{2}{x}+{a}}{{a}}\right)=\left(\frac{\mathrm{6}{ax}+\mathrm{3}{a}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{a}}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{y}^{\mathrm{2}} \left(\mathrm{2}{x}+{a}\right)=\left(\mathrm{6}{ax}+\mathrm{2}{a}^{\mathrm{2}} \right)^{\mathrm{2}} ×\frac{{a}}{{a}^{\mathrm{2}} } \\ $$$$\mathrm{4}{y}^{\mathrm{2}} \left(\mathrm{2}{x}+{a}\right)=\frac{\mathrm{4}{a}^{\mathrm{2}} \left(\mathrm{3}{x}+{a}\right)^{\mathrm{2}} }{{a}} \\ $$$${y}^{\mathrm{2}} \left(\mathrm{2}{x}+{a}\right)={a}\left(\mathrm{3}{x}+{a}\right)^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} \left(\mathrm{2}{x}+{a}\right)={a}\left(\mathrm{3}{x}+{a}\right)^{\mathrm{2}} \:\:\:\left[{proved}\right] \\ $$

Commented by peter frank last updated on 29/Dec/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com