Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162338 by HongKing last updated on 28/Dec/21

(d^2 y/dx^2 ) - 3((dy/dx)) - 4y = tan(x)log(cos(x))

$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:-\:\mathrm{3}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\:-\:\mathrm{4y}\:=\:\mathrm{tan}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{cos}\left(\mathrm{x}\right)\right) \\ $$

Answered by Ar Brandon last updated on 29/Dec/21

y′′−3y′−4y=tanx∙ln(cosx)  For y_(gh) : r^2 −3r−4=0⇒r=((3±5)/2)  y_(gh) =ae^(4x) +be^(−x)   By varying parameters, let  y_p =a(x)e^(4x) +b(x)e^(−x)    { ((a′(x)e^(4x) +b′(x)e^(−x) =0)),((4a′(x)e^(4x) −b′(x)e^(−x) =tanxln(cosx))) :}  W= determinant ((e^(4x) ,e^(−x) ),((4e^(4x) ),(−e^(−x) )))=−e^(3x) −4e^(−3x) =−3e^(−3x) ≠0  W_a = determinant ((0,e^(−x) ),((tanxln(cosx)),(−e^(−x) )))=e^(−x) tanxln(cosx)  W_b = determinant ((e^(4x) ,0),((4e^x ),(tanxln(cosx))))=e^(4x) tanxln(cosx)  a(x)=∫(W_a /W)dx=−(1/3)∫e^(2x) tanxln(cosx)dx  b(x)=∫(W_b /W)dx=−(1/3)∫e^(7x) tanxln(cosx)dx

$$\mathrm{y}''−\mathrm{3y}'−\mathrm{4y}=\mathrm{tan}{x}\centerdot\mathrm{ln}\left(\mathrm{cos}{x}\right) \\ $$$$\mathrm{For}\:\mathrm{y}_{\mathrm{gh}} :\:{r}^{\mathrm{2}} −\mathrm{3}{r}−\mathrm{4}=\mathrm{0}\Rightarrow{r}=\frac{\mathrm{3}\pm\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{y}_{{gh}} ={ae}^{\mathrm{4}{x}} +{be}^{−{x}} \\ $$$$\mathrm{By}\:\mathrm{varying}\:\mathrm{parameters},\:\mathrm{let} \\ $$$$\mathrm{y}_{\mathrm{p}} ={a}\left({x}\right){e}^{\mathrm{4}{x}} +{b}\left({x}\right){e}^{−{x}} \\ $$$$\begin{cases}{{a}'\left({x}\right){e}^{\mathrm{4}{x}} +{b}'\left({x}\right){e}^{−{x}} =\mathrm{0}}\\{\mathrm{4}{a}'\left({x}\right){e}^{\mathrm{4}{x}} −{b}'\left({x}\right){e}^{−{x}} =\mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right)}\end{cases} \\ $$$$\mathrm{W}=\begin{vmatrix}{{e}^{\mathrm{4}{x}} }&{{e}^{−{x}} }\\{\mathrm{4}{e}^{\mathrm{4}{x}} }&{−{e}^{−{x}} }\end{vmatrix}=−{e}^{\mathrm{3}{x}} −\mathrm{4}{e}^{−\mathrm{3}{x}} =−\mathrm{3}{e}^{−\mathrm{3}{x}} \neq\mathrm{0} \\ $$$$\mathrm{W}_{{a}} =\begin{vmatrix}{\mathrm{0}}&{{e}^{−{x}} }\\{\mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right)}&{−{e}^{−{x}} }\end{vmatrix}={e}^{−{x}} \mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right) \\ $$$$\mathrm{W}_{{b}} =\begin{vmatrix}{{e}^{\mathrm{4}{x}} }&{\mathrm{0}}\\{\mathrm{4}{e}^{{x}} }&{\mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right)}\end{vmatrix}={e}^{\mathrm{4}{x}} \mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right) \\ $$$${a}\left({x}\right)=\int\frac{\mathrm{W}_{{a}} }{\mathrm{W}}{dx}=−\frac{\mathrm{1}}{\mathrm{3}}\int{e}^{\mathrm{2}{x}} \mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$$${b}\left({x}\right)=\int\frac{\mathrm{W}_{{b}} }{\mathrm{W}}{dx}=−\frac{\mathrm{1}}{\mathrm{3}}\int{e}^{\mathrm{7}{x}} \mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$

Commented by HongKing last updated on 29/Dec/21

cool my dear Sir thank you so much

$$\mathrm{cool}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by HongKing last updated on 29/Dec/21

but what is the general solution dear Sir

$$\mathrm{but}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Commented by Ar Brandon last updated on 29/Dec/21

We need to find the primitives, which isn′t evident enough.

$$\mathrm{We}\:\mathrm{need}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{primitives},\:\mathrm{which}\:\mathrm{isn}'\mathrm{t}\:\mathrm{evident}\:\mathrm{enough}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com