Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 162377 by mnjuly1970 last updated on 29/Dec/21

    prove  that          ψ′′ ((1/4) )= −2π^( 3) − 56 ζ (3 )

$$ \\ $$$$\:\:{prove}\:\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\psi''\:\left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)=\:−\mathrm{2}\pi^{\:\mathrm{3}} −\:\mathrm{56}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$

Commented by aleks041103 last updated on 29/Dec/21

ψ′′((1/4))=ψ_2 ((1/4))=(−1)^(2+1) 2!Σ_(k=0) ^∞ (1/((k+(1/4))^(2+1) ))=  =−2Σ_(k=0) ^∞ (1/((k+(1/4))^3 ))=−128Σ_(k=0) ^∞ (1/((4k+1)^3 ))

$$\psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\psi_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\left(−\mathrm{1}\right)^{\mathrm{2}+\mathrm{1}} \mathrm{2}!\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}+\mathrm{1}} }= \\ $$$$=−\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{3}} }=−\mathrm{128}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{4}{k}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Commented by amin96 last updated on 29/Dec/21

bravo

$${bravo} \\ $$

Answered by mindispower last updated on 30/Dec/21

Ψ′′((1/4))=−128Σ_(n≥0) (1/((4n+1)^3 ))  Ψ′′(x)−Ψ′′(1−x)=−2π^3 (1+cot^2 (πx))cot(πx)  Ψ′′((1/4))−Ψ′′((3/4))=−4π^3   ζ(3)=Σ_(n≥0) (1/((4n+1)^3 ))+((1/(4n+3)))^3 +(1/(64(n+1)^3 ))+(1/(8(2n+1)^3 ))  =−((Ψ′′((1/4))+Ψ′′((3/4)))/(64))+(1/8)((1/8)ζ(3)+(7/8)ζ(3))  Ψ′′((3/4))=Ψ′′((1/4))+4π^3   ⇒−((2Ψ′′((1/4))+4π^3 )/(64))+((ζ(3))/8)=ζ(3)  ⇒Ψ′′((1/4))=−56ζ(3)−2π

$$\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=−\mathrm{128}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{4}{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Psi''\left({x}\right)−\Psi''\left(\mathrm{1}−{x}\right)=−\mathrm{2}\pi^{\mathrm{3}} \left(\mathrm{1}+{cot}^{\mathrm{2}} \left(\pi{x}\right)\right){cot}\left(\pi{x}\right) \\ $$$$\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\Psi''\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=−\mathrm{4}\pi^{\mathrm{3}} \\ $$$$\zeta\left(\mathrm{3}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{4}{n}+\mathrm{1}\right)^{\mathrm{3}} }+\left(\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{3}}\right)^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{64}\left({n}+\mathrm{1}\right)^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$=−\frac{\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\Psi''\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\mathrm{64}}+\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{1}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\frac{\mathrm{7}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)\right) \\ $$$$\Psi''\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\mathrm{4}\pi^{\mathrm{3}} \\ $$$$\Rightarrow−\frac{\mathrm{2}\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\mathrm{4}\pi^{\mathrm{3}} }{\mathrm{64}}+\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{8}}=\zeta\left(\mathrm{3}\right) \\ $$$$\Rightarrow\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=−\mathrm{56}\zeta\left(\mathrm{3}\right)−\mathrm{2}\pi \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com