All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 162377 by mnjuly1970 last updated on 29/Dec/21
provethatψ″(14)=−2π3−56ζ(3)
Commented by aleks041103 last updated on 29/Dec/21
ψ″(14)=ψ2(14)=(−1)2+12!∑∞k=01(k+14)2+1==−2∑∞k=01(k+14)3=−128∑∞k=01(4k+1)3
Commented by amin96 last updated on 29/Dec/21
bravo
Answered by mindispower last updated on 30/Dec/21
Ψ″(14)=−128∑n⩾01(4n+1)3Ψ″(x)−Ψ″(1−x)=−2π3(1+cot2(πx))cot(πx)Ψ″(14)−Ψ″(34)=−4π3ζ(3)=∑n⩾01(4n+1)3+(14n+3)3+164(n+1)3+18(2n+1)3=−Ψ″(14)+Ψ″(34)64+18(18ζ(3)+78ζ(3))Ψ″(34)=Ψ″(14)+4π3⇒−2Ψ″(14)+4π364+ζ(3)8=ζ(3)⇒Ψ″(14)=−56ζ(3)−2π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com