Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162382 by HongKing last updated on 29/Dec/21

Answered by Rasheed.Sindhi last updated on 29/Dec/21

 {: ((        (x+(√(x^2 +1)) )(y+(√(y^2 +1)) )=2011)),((         x+y=((2010)/( (√(2011))))  )) }          _(−)     (x+(√(x^2 +1)) )∙(((y+(√(y^2 +1)) )(y−(√(y^2 +1)) ))/((y−(√(y^2 +1)) )))=2011  −((x+(√(x^2 +1)) )/(y−(√(y^2 +1)) ))=2011  ((x+(√(x^2 +1)) )/(y−(√(y^2 +1)) ))+1=−2011+1  ((x+y)/(y−(√(y^2 +1)) ))=−2010  (((2010)/( (√(2011)) ))/(y−(√(y^2 +1)) ))=−2010  (1/( (√(2011)) (y−(√(y^2 +1)) )))=−1   y−(√(y^2 +1)) =−(1/( (√(2011))))  2y^2 +1−(1/(2011))=2y(√(y^2 +1))   y^2 +((1005)/(2011))=y(√(y^2 +1))   2011y^2 +1005=2011y(√(y^2 +1))   2011^2 y^4 ^(×) +2∙2011∙1005y^2 +1005^2                                              =2011^2 y^2 (y^2 +1)                                      =2011^2 y^4 ^(×) +2011^2 y^2   (2011∙2010−2011^2 )y^2 =−1005^2   y^2 =((−1005^2 )/(2011(2010−2011)))=((1005^2 )/(2011))  y=±((1005)/( (√(2011))))  As the equations are symmetric in x & y  So   x=±((1005)/( (√(2011))))  (−((1005)/( (√(2011)))),−((1005)/( (√(2011))))) doesn′t satisfy x+y=((2010)/( (√(2011))))  Hence  (x,y)=(((1005)/( (√(2011)))) , ((1005)/( (√(2011)))))

$$\underset{−} {\left.\begin{matrix}{\:\:\:\:\:\:\:\:\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\right)\left(\mathrm{y}+\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:\right)=\mathrm{2011}}\\{\:\:\:\:\:\:\:\:\:\mathrm{x}+\mathrm{y}=\frac{\mathrm{2010}}{\:\sqrt{\mathrm{2011}}}\:\:}\end{matrix}\right\}\:\:\:\:\:\:\:\:\:\:}\:\: \\ $$$$\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\right)\centerdot\frac{\left(\mathrm{y}+\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:\right)\left(\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:\right)}{\left(\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:\right)}=\mathrm{2011} \\ $$$$−\frac{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:}{\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:}=\mathrm{2011} \\ $$$$\frac{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:}{\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:}+\mathrm{1}=−\mathrm{2011}+\mathrm{1} \\ $$$$\frac{\mathrm{x}+\mathrm{y}}{\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:}=−\mathrm{2010} \\ $$$$\frac{\frac{\mathrm{2010}}{\:\sqrt{\mathrm{2011}}\:}}{\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:}=−\mathrm{2010} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2011}}\:\left(\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:\right)}=−\mathrm{1} \\ $$$$\:\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2011}}} \\ $$$$\mathrm{2y}^{\mathrm{2}} +\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2011}}=\mathrm{2y}\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\: \\ $$$$\mathrm{y}^{\mathrm{2}} +\frac{\mathrm{1005}}{\mathrm{2011}}=\mathrm{y}\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\: \\ $$$$\mathrm{2011y}^{\mathrm{2}} +\mathrm{1005}=\mathrm{2011y}\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\: \\ $$$$\overset{×} {\mathrm{2011}^{\mathrm{2}} \mathrm{y}^{\mathrm{4}} }+\mathrm{2}\centerdot\mathrm{2011}\centerdot\mathrm{1005y}^{\mathrm{2}} +\mathrm{1005}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2011}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \left(\mathrm{y}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\overset{×} {\mathrm{2011}^{\mathrm{2}} \mathrm{y}^{\mathrm{4}} }+\mathrm{2011}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \\ $$$$\left(\mathrm{2011}\centerdot\mathrm{2010}−\mathrm{2011}^{\mathrm{2}} \right)\mathrm{y}^{\mathrm{2}} =−\mathrm{1005}^{\mathrm{2}} \\ $$$$\mathrm{y}^{\mathrm{2}} =\frac{−\mathrm{1005}^{\mathrm{2}} }{\mathrm{2011}\left(\mathrm{2010}−\mathrm{2011}\right)}=\frac{\mathrm{1005}^{\mathrm{2}} }{\mathrm{2011}} \\ $$$$\mathrm{y}=\pm\frac{\mathrm{1005}}{\:\sqrt{\mathrm{2011}}} \\ $$$$\mathrm{As}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{are}\:\mathrm{symmetric}\:\mathrm{in}\:\mathrm{x}\:\&\:\mathrm{y} \\ $$$$\mathrm{So}\: \\ $$$$\mathrm{x}=\pm\frac{\mathrm{1005}}{\:\sqrt{\mathrm{2011}}} \\ $$$$\left(−\frac{\mathrm{1005}}{\:\sqrt{\mathrm{2011}}},−\frac{\mathrm{1005}}{\:\sqrt{\mathrm{2011}}}\right)\:\mathrm{doesn}'\mathrm{t}\:\mathrm{satisfy}\:\mathrm{x}+\mathrm{y}=\frac{\mathrm{2010}}{\:\sqrt{\mathrm{2011}}} \\ $$$$\mathrm{Hence} \\ $$$$\left(\mathrm{x},\mathrm{y}\right)=\left(\frac{\mathrm{1005}}{\:\sqrt{\mathrm{2011}}}\:,\:\frac{\mathrm{1005}}{\:\sqrt{\mathrm{2011}}}\right) \\ $$

Commented by HongKing last updated on 29/Dec/21

cool my dear Sir thank you so much

$$\mathrm{cool}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by mr W last updated on 29/Dec/21

how did you get this step sir?  from ((x+(√(x^2 +1)) )/(y−(√(y^2 +1)) ))+1=−2011+1  to ((x+y)/(y−(√(y^2 +1)) ))=−2010

$${how}\:{did}\:{you}\:{get}\:{this}\:{step}\:{sir}? \\ $$$${from}\:\frac{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:}{\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:}+\mathrm{1}=−\mathrm{2011}+\mathrm{1} \\ $$$${to}\:\frac{\mathrm{x}+\mathrm{y}}{\mathrm{y}−\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:}=−\mathrm{2010} \\ $$

Commented by mr W last updated on 29/Dec/21

for more generality can we change  the question to   { (((x+(√(x^2 +1)))(y+(√(y^2 +1)))=10)),((x+y=4)) :}

$${for}\:{more}\:{generality}\:{can}\:{we}\:{change} \\ $$$${the}\:{question}\:{to} \\ $$$$\begin{cases}{\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\left({y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\right)=\mathrm{10}}\\{{x}+{y}=\mathrm{4}}\end{cases} \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/21

Mistake sir! I considered  (√(x^2 +1)) & (√(y^2 +1))  same! I was very happy for eliminating x,  but this is not so easy.   😭😭😭

$$\mathrm{Mistake}\:\boldsymbol{\mathrm{sir}}!\:\mathrm{I}\:\mathrm{considered}\:\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\&\:\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{same}}!\:\mathrm{I}\:\mathrm{was}\:\mathrm{very}\:\mathrm{happy}\:\mathrm{for}\:\mathrm{eliminating}\:\mathrm{x}, \\ $$$$\mathrm{but}\:\mathrm{this}\:\mathrm{is}\:\mathrm{not}\:\mathrm{so}\:\mathrm{easy}.\: \\ $$😭😭😭

Commented by mr W last updated on 29/Dec/21

thanks for replying sir.  it′s really not easy to separate x, y  from each other.

$${thanks}\:{for}\:{replying}\:{sir}. \\ $$$${it}'{s}\:{really}\:{not}\:{easy}\:{to}\:{separate}\:{x},\:{y} \\ $$$${from}\:{each}\:{other}. \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/21

I wonder sir,that HongKing sir  also hasn′t noticed it! Perhaps the  answer is accidently correct or he  hadn′t answer of the question!  Anyway thanks for your keen observation!

$${I}\:{wonder}\:\boldsymbol{{sir}},{that}\:{HongKing}\:{sir} \\ $$$${also}\:{hasn}'{t}\:{noticed}\:{it}!\:{Perhaps}\:{the} \\ $$$${answer}\:{is}\:{accidently}\:{correct}\:{or}\:{he} \\ $$$${hadn}'{t}\:{answer}\:{of}\:{the}\:{question}! \\ $$$${Anyway}\:{thanks}\:{for}\:{your}\:{keen}\:{observation}! \\ $$

Commented by mr W last updated on 29/Dec/21

the question is not general enough.  both symmetric curves tangent each  other, so x=y fulfills the solution.

$${the}\:{question}\:{is}\:{not}\:{general}\:{enough}. \\ $$$${both}\:{symmetric}\:{curves}\:{tangent}\:{each} \\ $$$${other},\:{so}\:{x}={y}\:{fulfills}\:{the}\:{solution}. \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/21

Exacly sir, and this is the reason  I reached correct answer by  considering (√(x^2 +1)) =(√(y^2 +1)) !  Thanks again sir!

$$\mathcal{E}{xacly}\:{sir},\:{and}\:{this}\:{is}\:{the}\:{reason} \\ $$$${I}\:{reached}\:{correct}\:{answer}\:{by} \\ $$$${considering}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:=\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\:! \\ $$$$\mathcal{T}{hanks}\:{again}\:{sir}! \\ $$

Commented by mr W last updated on 29/Dec/21

������

Commented by Ar Brandon last updated on 29/Dec/21

It′s really not easy to separate x and y   from each other. They are deeply in love  🤗🤭

$$\mathrm{It}'\mathrm{s}\:\mathrm{really}\:\mathrm{not}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{separate}\:{x}\:\mathrm{and}\:{y}\: \\ $$$$\mathrm{from}\:\mathrm{each}\:\mathrm{other}.\:\mathrm{They}\:\mathrm{are}\:\mathrm{deeply}\:\mathrm{in}\:\mathrm{love} \\ $$🤗🤭

Answered by MJS_new last updated on 29/Dec/21

(x+(√(x^2 +1)))(y+(√(y^2 +1)))=a  x+y=b  let u=x+(√(x^2 +1))∧v=y+(√(y^2 +1))  uv=a  (1/2)(u−(1/u)+v−(1/v))=b  ⇔  uv=a  u+v=((2ab)/(a−1))  ⇔  v=(a/u)  u^2 −((2ab)/(a−1))u+a=0  ⇔  u=((ab±(√(−a(a^2 −(b^2 +2)a+1))))/(a−1))  v=((ab∓(√(−a(a^2 −(b^2 +2)a+1))))/(a−1))  ⇒  x=(b/2)±(((a+1))/(2a(a−1)))(√(−a(a^2 −(b^2 +2)a+1)))  y=(b/2)∓(((a+1))/(2a(a−1)))(√(−a(a^2 −(b^2 +2)a+1)))

$$\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\left({y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\right)={a} \\ $$$${x}+{y}={b} \\ $$$$\mathrm{let}\:{u}={x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\wedge{v}={y}+\sqrt{{y}^{\mathrm{2}} +\mathrm{1}} \\ $$$${uv}={a} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({u}−\frac{\mathrm{1}}{{u}}+{v}−\frac{\mathrm{1}}{{v}}\right)={b} \\ $$$$\Leftrightarrow \\ $$$${uv}={a} \\ $$$${u}+{v}=\frac{\mathrm{2}{ab}}{{a}−\mathrm{1}} \\ $$$$\Leftrightarrow \\ $$$${v}=\frac{{a}}{{u}} \\ $$$${u}^{\mathrm{2}} −\frac{\mathrm{2}{ab}}{{a}−\mathrm{1}}{u}+{a}=\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$${u}=\frac{{ab}\pm\sqrt{−{a}\left({a}^{\mathrm{2}} −\left({b}^{\mathrm{2}} +\mathrm{2}\right){a}+\mathrm{1}\right)}}{{a}−\mathrm{1}} \\ $$$${v}=\frac{{ab}\mp\sqrt{−{a}\left({a}^{\mathrm{2}} −\left({b}^{\mathrm{2}} +\mathrm{2}\right){a}+\mathrm{1}\right)}}{{a}−\mathrm{1}} \\ $$$$\Rightarrow \\ $$$${x}=\frac{{b}}{\mathrm{2}}\pm\frac{\left({a}+\mathrm{1}\right)}{\mathrm{2}{a}\left({a}−\mathrm{1}\right)}\sqrt{−{a}\left({a}^{\mathrm{2}} −\left({b}^{\mathrm{2}} +\mathrm{2}\right){a}+\mathrm{1}\right)} \\ $$$${y}=\frac{{b}}{\mathrm{2}}\mp\frac{\left({a}+\mathrm{1}\right)}{\mathrm{2}{a}\left({a}−\mathrm{1}\right)}\sqrt{−{a}\left({a}^{\mathrm{2}} −\left({b}^{\mathrm{2}} +\mathrm{2}\right){a}+\mathrm{1}\right)} \\ $$

Commented by mr W last updated on 29/Dec/21

great!

$${great}! \\ $$

Commented by Tawa11 last updated on 30/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by HongKing last updated on 31/Dec/21

cool my dear Sir

$$\mathrm{cool}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com