Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 162399 by cortano last updated on 29/Dec/21

  Let m & n be two positive numbers    greater than 1 . If lim_(p→0)  ((e^(cos (p^n )) −e)/p^m ) = (1/2)e    then (n/m)=?

Letm&nbetwopositivenumbers greaterthan1.Iflimp0ecos(pn)epm=12e thennm=?

Commented byblackmamba last updated on 29/Dec/21

 lim_(p→0)  ((e^(cos (p^n )) −e)/p^m ) = e lim_(p→0)  ((e^(cos (p^n )−1) −1)/p^m ) = (1/2)e   lim_(p→0)  ((e^(cos (p^n )−1) −1)/(cos (p^n )−1)) ×lim_(p→0)  ((cos (p^n )−1)/p^m ) = (1/2)   [ notice that lim_(x→0)  ((e^x −1)/x) = 1 ]   [ lim_(p→0)  ((e^(cos (p^n )−1) −1)/(cos (p^n )−1)) = 1 ]    ⇔ lim_(p→0)  ((cos (p^n )−1)/p^m ) = (1/2)   ⇔ lim_(p→0)  ((−2sin^2 ((p^n /2)))/p^m ) =(1/2)   ⇔ lim_(p→0)  (((((sin ((p^n /2)))/(((p^n /2)))))^2 .((p^(2n) /4)))/p^m ) =^?  −(1/4)   2n=m ⇒(n/m)= (n/(2m)) = (1/2)

limp0ecos(pn)epm=elimp0ecos(pn)11pm=12e limp0ecos(pn)11cos(pn)1×limp0cos(pn)1pm=12 [noticethatlimx0ex1x=1] [limp0ecos(pn)11cos(pn)1=1] limp0cos(pn)1pm=12 limp02sin2(pn2)pm=12 limp0(sin(pn2)(pn2))2.(p2n4)pm=?14 2n=mnm=n2m=12

Answered by qaz last updated on 29/Dec/21

lim_(p→0) ((e^(cos (p^n )) −e)/p^m )  =lim_(p→0) ((e(e^(cos (p^n )−1) −1))/p^m )  =elim_(p→0) ((cos (p^n )−1)/p^m )  =elim_(p→0) ((−(1/2)p^(2n) )/p^m )  =−(1/2)e  ⇒(n/m)=(1/2)

limp0ecos(pn)epm =limp0e(ecos(pn)11)pm =elimp0cos(pn)1pm =elimp012p2npm =12e nm=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com