Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 162490 by amin96 last updated on 29/Dec/21

Answered by mr W last updated on 30/Dec/21

Commented by mr W last updated on 30/Dec/21

R=4=radius  OA=a=1  s=side length of equilateral  OC=(√(s^2 −a^2 ))  DC=s cos ((π/3)+α)=(1/2)(s cos α−(√3) s sin α)           =(1/2)((√(s^2 −a^2 ))−(√3) a)  DB=s sin ((π/3)+α)=(1/2)((√3) s cos α+s sin α)          =(1/2)((√(3(s^2 −a^2 )))+a)  OD=(√(s^2 −a^2 ))− (1/2)((√(s^2 −a^2 ))−(√3) a)         = (1/2)((√(s^2 −a^2 ))+(√3) a)  OD^2 +DB^2 =OB^2    (1/4)((√(s^2 −a^2 ))+(√3) a)^2 +(1/4)((√(3(s^2 −a^2 )))+a)^2 =R^2    s^2 −a^2 +3a^2 +2a(√(3(s^2 −a^2 )))+3(s^2 −a^2 )+a^2 +2a(√(3(s^2 −a^2 )))=4R^2    a(√(3(s^2 −a^2 )))=R^2 −s^2    3a^2 (s^2 −a^2 )=s^4 +R^4 −2R^2 s^2    s^4 −(2R^2 +3a^2 )s^2 +R^4 +3a^4 =0  s^2 =((2R^2 +3a^2 −(√((2R^2 +3a^2 )^2 −4(R^4 +3a^4 ))))/2)      =((2R^2 +3a^2 −a(√(3(4R^2 −a^2 ))))/2)  with R=4, a=1:  s^2 =((2×4^2 +3×1^2 −1(√(3(4×4^2 −1^2 ))))/2)=((35−3(√(21)))/2)  area of blue equilateral  A_(blue) =(((√3)s^2 )/4)=(((√3)(35−3(√(21))))/8)=((35(√3)−9(√7))/8)≈4.601    ===================  let ξ=(a/R)  ((s/R))^2 =((2+3ξ^2 −ξ(√(3(4−ξ^2 ))))/2)  ((s/R))_(max) =1 at ξ=0  ((s/R))_(min) =(√3)−1 at ξ=(((√3)−1)/( (√2)))

$${R}=\mathrm{4}={radius} \\ $$$${OA}={a}=\mathrm{1} \\ $$$${s}={side}\:{length}\:{of}\:{equilateral} \\ $$$${OC}=\sqrt{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${DC}={s}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({s}\:\mathrm{cos}\:\alpha−\sqrt{\mathrm{3}}\:{s}\:\mathrm{sin}\:\alpha\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} }−\sqrt{\mathrm{3}}\:{a}\right) \\ $$$${DB}={s}\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}}\:{s}\:\mathrm{cos}\:\alpha+{s}\:\mathrm{sin}\:\alpha\right) \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}+{a}\right) \\ $$$${OD}=\sqrt{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} }−\:\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} }−\sqrt{\mathrm{3}}\:{a}\right) \\ $$$$\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} }+\sqrt{\mathrm{3}}\:{a}\right) \\ $$$${OD}^{\mathrm{2}} +{DB}^{\mathrm{2}} ={OB}^{\mathrm{2}} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{4}}\left(\sqrt{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} }+\sqrt{\mathrm{3}}\:{a}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}\left(\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}+{a}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\:{s}^{\mathrm{2}} −{a}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} +\mathrm{2}{a}\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}+\mathrm{3}\left({s}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)+{a}^{\mathrm{2}} +\mathrm{2}{a}\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}=\mathrm{4}{R}^{\mathrm{2}} \\ $$$$\:{a}\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}={R}^{\mathrm{2}} −{s}^{\mathrm{2}} \\ $$$$\:\mathrm{3}{a}^{\mathrm{2}} \left({s}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)={s}^{\mathrm{4}} +{R}^{\mathrm{4}} −\mathrm{2}{R}^{\mathrm{2}} {s}^{\mathrm{2}} \\ $$$$\:{s}^{\mathrm{4}} −\left(\mathrm{2}{R}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right){s}^{\mathrm{2}} +{R}^{\mathrm{4}} +\mathrm{3}{a}^{\mathrm{4}} =\mathrm{0} \\ $$$${s}^{\mathrm{2}} =\frac{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} −\sqrt{\left(\mathrm{2}{R}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\left({R}^{\mathrm{4}} +\mathrm{3}{a}^{\mathrm{4}} \right)}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} −{a}\sqrt{\mathrm{3}\left(\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$${with}\:{R}=\mathrm{4},\:{a}=\mathrm{1}: \\ $$$${s}^{\mathrm{2}} =\frac{\mathrm{2}×\mathrm{4}^{\mathrm{2}} +\mathrm{3}×\mathrm{1}^{\mathrm{2}} −\mathrm{1}\sqrt{\mathrm{3}\left(\mathrm{4}×\mathrm{4}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} \right)}}{\mathrm{2}}=\frac{\mathrm{35}−\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{2}} \\ $$$${area}\:{of}\:{blue}\:{equilateral} \\ $$$${A}_{{blue}} =\frac{\sqrt{\mathrm{3}}{s}^{\mathrm{2}} }{\mathrm{4}}=\frac{\sqrt{\mathrm{3}}\left(\mathrm{35}−\mathrm{3}\sqrt{\mathrm{21}}\right)}{\mathrm{8}}=\frac{\mathrm{35}\sqrt{\mathrm{3}}−\mathrm{9}\sqrt{\mathrm{7}}}{\mathrm{8}}\approx\mathrm{4}.\mathrm{601} \\ $$$$ \\ $$$$=================== \\ $$$${let}\:\xi=\frac{{a}}{{R}} \\ $$$$\left(\frac{{s}}{{R}}\right)^{\mathrm{2}} =\frac{\mathrm{2}+\mathrm{3}\xi^{\mathrm{2}} −\xi\sqrt{\mathrm{3}\left(\mathrm{4}−\xi^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$\left(\frac{{s}}{{R}}\right)_{{max}} =\mathrm{1}\:{at}\:\xi=\mathrm{0} \\ $$$$\left(\frac{{s}}{{R}}\right)_{{min}} =\sqrt{\mathrm{3}}−\mathrm{1}\:{at}\:\xi=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$

Commented by mr W last updated on 30/Dec/21

Commented by amin96 last updated on 30/Dec/21

greaat sir

$$\boldsymbol{{greaat}}\:\boldsymbol{{sir}} \\ $$

Commented by Tawa11 last updated on 30/Dec/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com