Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162520 by HongKing last updated on 30/Dec/21

Find:  𝛀 =∫_( 0) ^( 𝛑)  (((x cos x)/(1 + sin x)))^2 dx

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\boldsymbol{\pi}} {\int}}\:\left(\frac{\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}{\mathrm{1}\:+\:\mathrm{sin}\:\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx}\: \\ $$

Answered by Ar Brandon last updated on 30/Dec/21

Ω=∫_0 ^π (((xcosx)/(1+sinx)))^2 dx=∫_0 ^π ((x^2 cos^2 x)/((1+sinx)^2 ))dx=∫_0 ^π ((cosx)/((1+sinx)^2 ))∙(x^2 cosx)dx   { ((u(x)=x^2 cosx)),((v′(x)=((cos)/((1+sinx)^2 )))) :}⇒ { ((u′(x)=−x^2 sinx+2xcosx)),((v(x)=−(1/(1+sinx)))) :}  Ω=−[((x^2 cosx)/(1+sinx))]_0 ^π +∫_0 ^π ((2xcosx−x^2 sinx)/(1+sinx))dx      =π^2 +2∫_0 ^π x∙((cosx)/(1+sinx))dx−∫_0 ^π ((x^2 sinx)/(1+sinx))dx      =π^2 +2[xln(1+sinx)]_0 ^π −2∫_0 ^π ln(1+sinx)dx−∫_0 ^π x^2 (1−(1/(1+sinx)))dx      =π^2 +0−8∫_0 ^(π/2) ln(cosu+sinu)du−(π^3 /3)+∫_0 ^π (x^2 /(1+sinx))dx      =π^2 −8(G−((πln2)/4))−(π^3 /3)+∫_0 ^π (x^2 /(1+sinx))dx

$$\Omega=\int_{\mathrm{0}} ^{\pi} \left(\frac{{x}\mathrm{cos}{x}}{\mathrm{1}+\mathrm{sin}{x}}\right)^{\mathrm{2}} {dx}=\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} {x}}{\left(\mathrm{1}+\mathrm{sin}{x}\right)^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}{x}}{\left(\mathrm{1}+\mathrm{sin}{x}\right)^{\mathrm{2}} }\centerdot\left({x}^{\mathrm{2}} \mathrm{cos}{x}\right){dx} \\ $$$$\begin{cases}{\mathrm{u}\left({x}\right)={x}^{\mathrm{2}} \mathrm{cos}{x}}\\{\mathrm{v}'\left({x}\right)=\frac{\mathrm{cos}}{\left(\mathrm{1}+\mathrm{sin}{x}\right)^{\mathrm{2}} }}\end{cases}\Rightarrow\begin{cases}{\mathrm{u}'\left({x}\right)=−{x}^{\mathrm{2}} \mathrm{sin}{x}+\mathrm{2}{x}\mathrm{cos}{x}}\\{\mathrm{v}\left({x}\right)=−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}{x}}}\end{cases} \\ $$$$\Omega=−\left[\frac{{x}^{\mathrm{2}} \mathrm{cos}{x}}{\mathrm{1}+\mathrm{sin}{x}}\right]_{\mathrm{0}} ^{\pi} +\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{2}{x}\mathrm{cos}{x}−{x}^{\mathrm{2}} \mathrm{sin}{x}}{\mathrm{1}+\mathrm{sin}{x}}{dx} \\ $$$$\:\:\:\:=\pi^{\mathrm{2}} +\mathrm{2}\int_{\mathrm{0}} ^{\pi} {x}\centerdot\frac{\mathrm{cos}{x}}{\mathrm{1}+\mathrm{sin}{x}}{dx}−\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} \mathrm{sin}{x}}{\mathrm{1}+\mathrm{sin}{x}}{dx} \\ $$$$\:\:\:\:=\pi^{\mathrm{2}} +\mathrm{2}\left[{x}\mathrm{ln}\left(\mathrm{1}+\mathrm{sin}{x}\right)\right]_{\mathrm{0}} ^{\pi} −\mathrm{2}\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{1}+\mathrm{sin}{x}\right){dx}−\int_{\mathrm{0}} ^{\pi} {x}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}{x}}\right){dx} \\ $$$$\:\:\:\:=\pi^{\mathrm{2}} +\mathrm{0}−\mathrm{8}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cos}{u}+\mathrm{sin}{u}\right){du}−\frac{\pi^{\mathrm{3}} }{\mathrm{3}}+\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{sin}{x}}{dx} \\ $$$$\:\:\:\:=\pi^{\mathrm{2}} −\mathrm{8}\left({G}−\frac{\pi\mathrm{ln2}}{\mathrm{4}}\right)−\frac{\pi^{\mathrm{3}} }{\mathrm{3}}+\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{sin}{x}}{dx} \\ $$

Commented by HongKing last updated on 31/Dec/21

Thank you so much my dear Sir

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com